Postdoctoral Fellowship: CREST-PRP: Investigation and design of Molecular Spintronic photovoltaic devices via Raman Spectroscopy

博士后奖学金:CREST-PRP:通过拉曼光谱研究和设计分子自旋电子光伏器件

基本信息

  • 批准号:
    2401024
  • 负责人:
  • 金额:
    $ 31.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

The CREST Postdoctoral Research Program (CREST-PRP) provides two years of support for research, training, and mentoring experiences for individual early career scientists at active CREST Centers. The goal of the CREST-PRP is to increase the STEM workforce presence of individuals who are members of groups underrepresented in STEM fields. CREST-PRP awards recognize investigators with significant potential and support their research experiences to broaden their perspectives, facilitate interdisciplinary interactions, and prepare CREST-PRP scholars for positions of leadership within the scientific community. The research project “CREST-PRP: Investigation and Design of Molecular Spintronic Photovoltaic Devices Via Raman Spectroscopy” is in direct alignment with the CREST-PRP goals. Submitted by a postdoctoral researcher affiliated with the CREST Center for Nanotechnology Research and Education (CNRE) housed at the University of the District of Columbia, the project will focus on the development of a new type of solar cell that is superior to typical silicon-based solar cells in terms of efficiency, cost, and sustainability. Building on the foundational work in this emerging solar cell science already occurring at the CNRE, this project will take advantage of the spin property of electrons to generate spin-based solar cells developed from inexpensive, Earth-abundant materials like iron and nickel, making them cheaper and recyclable. The proposed research will advance solar cell science by providing insights into the fabrication of a large area solar cell capable of generating a substantial photocurrent. The optical activity under investigation in this project holds potential to promote other innovations in light harvesting materials, optical sensors, and novel metamaterials. Further, this project will provide training and mentorship to a postdoctoral researcher, enhancing the scholar’s skills as a researcher and principal investigator. The project’s proposed research also aligns with the CHIPS Act goal to bolster semiconductor research training to maintain American competitiveness in the global semiconductor industry. The Magnetic Tunnel Junction Molecular Spintronic Devices (MTJMSDs) utilized in this research are constructed by linking the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) with an organometallic metal cluster (OMC) or a single molecule magnet (SMM) bridging molecule along the exposed edges of the device. The paramagnetic OMC and SMM molecules create strong exchange coupling between the ferromagnetic electrodes at room temperature. Previous research conducted at the CNRE has shown that the TaCoNiFe/AlOx/NiFe MTJMSD can generate a reproducible photocurrent and provided evidence of the molecules’ transformative impact on the ferromagnetic metal electrodes using various magnetic and optical experimental methods. This study will include a variety of paramagnetic molecular bridges, ferromagnetic electrode compositions, and insulator thicknesses. Raman studies also indicate that the MTJMSDs ferromagnetic electrodes respond to visible light radiation; this factor will allow the use of Raman spectroscopy to investigate the spatial range of the photovoltaic effect on the MTJMSD cross-junction area. Findings will be used to fabricate a large area (1 cm2) solar cell based on the optimal molecule/electrode/spatial orientation observed in the studied MTJMSDs. Limited research has been conducted on this spin-based photovoltaic effect. However, the development of spin-based solar cells may lead to significant cost savings in solar cell production due to the lower cost of materials and manufacture compared to traditional silicon-based devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
CREST博士后研究计划(Crest-PRP)为Active Crest Centers的个人早期职业科学家提供了两年的研究,培训和心理体验。 Crest-PRP的目标是增加STEM领域中代表性不足的群体成员的STEM劳动力的存在。 Crest-PRP奖项认可具有巨大潜力并支持其研究经验的调查人员,以扩大其观点,支持跨学科的互动,并为Crest-PRP学者准备科学界的领导地位。研究项目“ Crest-PRP:通过拉曼光谱对分子自旋光伏设备的研究和设计”直接与Crest-PRP目标保持一致。该项目由位于哥伦比亚大学大学的纳米技术研究与教育中心(CNRE)的一名博士后研究员分支机构提交,该项目将集中于开发一种新型的太阳能电池,该细胞在效率,成本和可持续性方面优于典型的基于硅的太阳能电池。该项目的基础上已经发生在CNRE的这种新兴太阳能科学中的基础工作,将利用电子的自旋特性,以生成由廉价的,含有型号的材料(如铁和镍)开发的基于自旋的太阳能电池,使其可廉价且可回收。拟议的研究将通过提供对能够产生大量光电流的大面积太阳能电池的洞察来提高太阳能电池科学。该项目投资的光学活动具有促进轻型收获材料,光学传感器和新型超材料的其他创新的潜力。此外,该项目将为博士后研究人员提供培训和心态,从而提高学者作为研究人员和首席研究员的技能。该项目的拟议研究还与《 CHIPS法案》的目标保持一致,以增强半导体研究培训,以维持美国在全球半导体行业中的竞争力。这项研究中使用的磁性隧道连接分子旋转器(MTJMSD)是通过将磁性隧道连接点(MTJ)的铁磁电子与有机金属簇(OMC)或单个分子磁铁(SMM)桥分子沿设备的曝光边缘连接起来的。顺磁OMC和SMM分子在室温下在铁磁电极之间产生强交换耦合。先前在CNRE进行的研究表明,Taconife/Alox/Nife MTJMSD可以生成可重复的光电流,并使用各种磁性和光学实验方法提供了该分子对铁电磁金属电极的变化影响。这项研究将包括多种顺磁分子桥,铁磁电极组成和绝缘体厚度。拉曼研究还表明,MTJMSD铁磁电极对可见的光辐射有反应。该因素将允许使用拉曼光谱研究光伏效应对MTJMSD跨结区的空间范围。发现将根据在研究造成的MTJMSD中观察到的最佳分子/电极/空间取向来制造大面积(1 cm2)太阳能电池。对这种基于自旋的光伏效应进行了有限的研究。但是,由于材料和制造成本较低,与传统的基于硅的设备相比,基于自旋的太阳能电池的发展可能导致太阳能电池生产的成本节省大量成本。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准,通过评估来诚实地诚实地支持支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Omari Kirkland其他文献

Omari Kirkland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

相似海外基金

Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: CREST-PRP: Ecophysiological response of tidal freshwater tree ecosystem engineers to chronic thermal, hydric, and salinity stressors in the Caribbean.
博士后奖学金:CREST-PRP:潮汐淡水树生态系统工程师对加勒比地区慢性热、水和盐压力源的生态生理反应。
  • 批准号:
    2400973
  • 财政年份:
    2024
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
Transcriptional regulation of progenitor cell fate in craniofacial ligament regeneration
颅面韧带再生中祖细胞命运的转录调控
  • 批准号:
    10709889
  • 财政年份:
    2022
  • 资助金额:
    $ 31.95万
  • 项目类别:
CREST-Postdoctoral Research Fellowship:Design of Ag Nanoparticles-Coated ZnO Nanoshells Substrate for the Detection of Contaminants in Water Using Surface-Enhanced Raman Scattering
CREST-博士后研究奖学金:设计银纳米粒子涂覆的氧化锌纳米壳基底,用于利用表面增强拉曼散射检测水中的污染物
  • 批准号:
    2112537
  • 财政年份:
    2021
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2021: Identifying the functional roles of SNAI2,SOX9, and SOX10 in cranial neural crest cell specification and adhesion
2021 财年 NSF 生物学博士后奖学金:识别 SNAI2、SOX9 和 SOX10 在颅神经嵴细胞规范和粘附中的功能作用
  • 批准号:
    2109422
  • 财政年份:
    2021
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了