Dynamics of Nonlinear and Disordered Systems

非线性和无序系统的动力学

基本信息

  • 批准号:
    2350356
  • 负责人:
  • 金额:
    $ 46.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Observations of solitary waves that maintain their shape and velocity during their propagation were recorded around 200 years ago. First by Bidone in Turin in 1826, and then famously by Russell in 1834 who followed a hump of water moving at constant speed along a channel for several miles. Today these objects are known as solitons. Lying at the intersection of mathematics and physics, they have been studied rigorously since the 1960s. For completely integrable wave equations, many properties of solitons are known, such as their elastic collisions, their stability properties, as well as their role as building blocks in the long-time description of waves. The latter is particularly important, as it for example predicts how waves carrying information decompose into quantifiable units. In quantum physics, quantum chemistry, and material science, these mathematical tools allow for a better understanding of the movement of electrons in various media. This project aims to develop the mathematical foundations which support these areas in applied science, which are of great importance to industry and society at large. The project provides research training opportunities for graduate students.The project’s goal is to establish both new results and new techniques in nonlinear evolution partial differential equations on the one hand, and the spectral theory of disordered systems on the other hand. The long-range scattering theory developed by Luhrmann and the Principal Investigator (PI) achieved the first results on potentials which exhibit a threshold resonance in the context of topological solitons. This work is motivated by the fundamental question about asymptotic kink stability for the phi-4 model. Asymptotic stability of Ginzburg-Landau vortices in their own equivariance class is not understood. The linearized problem involves a non-selfadjoint matrix operator, and the PI has begun to work on its spectral theory. With collaborators, the PI will engage on research on bubbling for the harmonic map heat flow and attempt to combine the recent paper on continuous-in-time bubbling with a suitable modulation theory. The third area relevant to this project is the spectral theory of disordered systems. More specifically, the PI will continue his work on quasiperiodic symplectic cocycles which arise in several models in condensed matter physics such as in graphene and on non-perturbative methods to analyze them.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大约 200 年前,比多内 (Bidone) 在都灵首次记录了在传播过程中保持其形状和速度的孤立波的观测结果,随后罗素 (Russell) 在 1834 年跟踪了沿河道以恒定速度移动的水峰数次。今天,这些物体被称为孤子,它们处于数学和物理学的交叉点,自 20 世纪 60 年代以来就一直在研究完全可积波。方程中,孤子的许多特性都是已知的,例如它们的弹性碰撞、稳定性特性以及它们在波的长期描述中的作用,后者尤其重要,因为它可以预测波如何传播。在量子物理学、量子化学和材料科学中,这些数学工具可以更好地理解电子在各种介质中的运动,该项目旨在开发支持这些领域的应用科学的数学基础。哪些对工业非常重要该项目为研究生提供研究培训机会。该项目的目标一方面是建立非线性演化偏微分方程的新成果和新技术,另一方面是无序系统的谱理论。 Luhrmann 和首席研究员 (PI) 开发的长程散射理论在拓扑孤子背景下表现出阈值共振的势方面取得了第一个结果。这项工作的动机是关于渐近扭结稳定性的基本问题。 phi-4 模型。Ginzburg-Landau 涡旋在其自身等方差类中的渐近稳定性尚不清楚。线性化问题涉及非自共轭矩阵算子,PI 已开始与合作者一起研究其谱理论。从事谐波图热流冒泡的研究,并尝试将最近关于连续时间冒泡的论文与合适的调制理论结合起来。与该项目相关的第三个领域是。更具体地说,PI 将继续研究准周期辛共循环,这些共循环出现在凝聚态物理的多个模型中,例如石墨烯,以及分析它们的非微扰方法。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilhelm Schlag其他文献

石英のESR信号強度と結晶化度によるタクラマカン砂漠における砂の供給源と運搬システムの解明
基于ESR信号强度和石英结晶度阐明塔克拉玛干沙漠沙子来源和输送系统
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;勝山正則,谷誠;数土直紀;烏田明典
  • 通讯作者:
    烏田明典
Biharmonic Lagrangean submanifolds in Kaehler manifolds
凯勒流形中的双调和拉格朗日子流形
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Joachim Krieger;Kenji Nakanishi;Wilhelm Schlag;H. Urakawa and S. Maeta
  • 通讯作者:
    H. Urakawa and S. Maeta
On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
一维聚焦三次Klein-Gordon方程孤子的余维一稳定性
A perturbation theory for core operators of Hilbert-Schmidt submodules
Hilbert-Schmidt子模核心算子的摄动理论
Infinite sequences of inner functions and submodules in $H^2({\mathbb D}^2)$}
$H^2({mathbb D}^2)$} 中内部函数和子模块的无限序列
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenji Nakanishi;Wilhelm Schlag;Michio Seto;瀬戸道生
  • 通讯作者:
    瀬戸道生

Wilhelm Schlag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilhelm Schlag', 18)}}的其他基金

Spectral Theory and Nonlinear Waves
谱理论和非线性波
  • 批准号:
    2054841
  • 财政年份:
    2021
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1764384
  • 财政年份:
    2018
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1842197
  • 财政年份:
    2018
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1902691
  • 财政年份:
    2018
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Long-Term Dynamics of Nonlinear Evolution Partial Differential Equations
非线性演化偏微分方程的长期动力学
  • 批准号:
    1500696
  • 财政年份:
    2015
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Global dynamics for nonlinear dispersive equations
非线性色散方程的全局动力学
  • 批准号:
    1160817
  • 财政年份:
    2012
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Harmonic Analysis, Mathematical Physics, and Nonlinear PDE
调和分析、数学物理和非线性偏微分方程
  • 批准号:
    0653841
  • 财政年份:
    2007
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0617854
  • 财政年份:
    2005
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Harmonic Analysis with Applications to Mathematical Physics
调和分析及其在数学物理中的应用
  • 批准号:
    0300081
  • 财政年份:
    2003
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Nonperturbative methods for quasiperiodic discrete Schroedinger equations on the line
在线准周期离散薛定谔方程的非微扰方法
  • 批准号:
    0241930
  • 财政年份:
    2002
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant

相似国自然基金

考虑静风效应和振幅影响的超大跨度悬索桥非线性颤振演化机理研究
  • 批准号:
    52378537
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
多晶钙钛矿X射线探测器非线性电流响应机理与抑制研究
  • 批准号:
    62304236
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非线性模型结构性误差的动力学订正方法研究
  • 批准号:
    42375059
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
复杂网络上非线性动力系统临界点的严格边界
  • 批准号:
    12305038
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂非线性系统的预设性能鲁棒输出调节问题及其应用
  • 批准号:
    62373156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
  • 批准号:
    2226666
  • 财政年份:
    2023
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Computational analysis of nonlinear electromagnetics in disordered photonic systems
无序光子系统中非线性电磁学的计算分析
  • 批准号:
    1408115
  • 财政年份:
    2014
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Analysis of Quantum Spin Systems by a Nonlinear Sigma Model Method
用非线性西格玛模型方法分析量子自旋系统
  • 批准号:
    14540366
  • 财政年份:
    2002
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Wave phenomena in nonlinear disordered optical media
非线性无序光学介质中的波动现象
  • 批准号:
    11640373
  • 财政年份:
    1999
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Research of Quantum Spin Systems with Spin Gap
具有自旋间隙的量子自旋系统的理论研究
  • 批准号:
    10640357
  • 财政年份:
    1998
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了