OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
基本信息
- 批准号:2348719
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ransomware is an extortion-type of malicious software (malware) that encrypts, locks and exfiltrates data from local and networked assets for financial gains, hindering the availability of such resources while causing immense reputational damages. Recent ransomware attacks on high-valued cyberinfrastructure (CI) in the health, educational, IT, and critical sectors demanded ransoms up to $50M while causing collateral losses estimated to reach $20 billion in the next few years. While there are number of ongoing research efforts that address the ransomware phenomena, they are hindered by several challenges. These include the lack of ransomware-specific analysis methods that permit the comprehension of (state-sponsored) attacks that specifically target US CI, the ineffectiveness of current network-based methods that are capable of thwarting ransomware propagation attempts, and the shortage of host-based techniques that would proactively mitigate the threat. To this end, this project serves NSF's mission to promote the progress of science by developing data-driven methods, techniques and algorithms to offer a first-of-a-kind multidimensional approach to provide CI resiliency against evolving ransomware attacks. The project empowers numerous CI communities, minorities and K-12 students with open source tools, virtual training material and empirical data to facilitate forward-looking research and education. The project further supports the operational cyber situational awareness community by indexing the generated threat intelligence in an open source platform, making it readily available to support near real-time, ransomware-centric mitigation. The project draws upon close to 2M (US-targeted) ransomware samples per month provided by an industry partner. The project develops binary authorship methods that are resilient against common obfuscation and refactoring techniques to (1) provide empirical evidence related to the orchestration behavior of the attack entity, and (2) facilitate the large-scale measurements and characterization of such orchestrated events. Along this vein, the project initially leverages pre-processing data methods based on opcode frequencies to subsequently devise feature engineering processes as applied on binary code to extract salient coding habits; related to memory usages, utilization of specific data structures, function terminations, etc. Moreover, the project ingests run-time behavioral reports of ransomware and develops learning methodologies by innovating techniques rooted in natural language processing and attention mechanisms. This aims at engineering models that could provide resiliency from the network level, while applying concept drift notions to capture and comprehend the mutating behaviors of such ransomware. The project also designs and implements data carving techniques by applying the devised learning models on streaming network traffic. Additionally, the project explores host-based prevention methodologies by exploiting a set of ransomware-specific behaviors. Herein, the project conducts large-scale ransomware instrumentation, models ransomware sensing activities based on DLL calls, while devising data mining methods based on a priori methods. The project further develops data sharing capabilities to facilitate access to raw data, and the generated threat intelligence. The project also devises virtual labs’ material to enable large-scale, cloud-based research and training activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
勒索软件是恶意软件(恶意软件)的扩展类型,可对本地和网络资产的数据进行加密,锁定和删除,以获得财务收益,从而阻碍了此类资源的可用性,同时造成了巨大的报告损害。最近对健康,教育,IT和关键部门的高价值网络基础设施(CI)的勒索软件袭击要求赎金高达5000万美元,同时造成未来几年的抵押品损失估计将达到200亿美元。尽管有许多正在进行的研究工作可以解决勒索软件现象,但它们受到了一些挑战的阻碍。其中包括缺乏特定于勒索软件的分析方法,这些方法允许理解(国家赞助的)攻击,这些攻击是专门针对美国CI的(国家赞助的)攻击,能够利用勒索勒索软件传播尝试的当前基于网络的方法的无效,以及基于主机的技术短缺,这些技术将主动降低威胁。为此,该项目旨在通过开发数据驱动的方法,技术和算法来促进科学进步的使命,从而提供了一种首要的多维方法,以提供CI弹性,以防止不断发展的违反勒索软件攻击。该项目使众多CI社区,少数民族和K-12学生拥有开源工具,虚拟培训材料和经验数据,以促进前瞻性研究和教育。该项目通过在开源平台中索引生成的威胁情报来进一步支持运营网络情境意识社区,从而易于实时支持以勒索软件为中心的缓解措施。该项目利用行业合作伙伴每月提供的近2M(靶向)勒索软件样本。该项目开发了二元作者身份方法,这些方法依赖于常见的混淆和重构技术(1)提供与攻击实体的编排行为有关的经验证据,以及(2)支持大规模测量和此类策划事件的大规模测量和表征。沿着这种脉络,该项目最初基于OpCode频率利用预处理数据方法,以便随后在二进制代码上应用的功能工程过程来提取出色的编码习惯;与内存使用情况,特定数据结构的利用,功能终止等相关。此外,该项目摄入勒索软件的运行时行为报告,并通过植根于自然语言处理和注意力机制的创新技术开发学习方法。这旨在工程模型可以从网络级别提供弹性,同时应用概念漂移注释以捕获和理解此类勒索软件的突变行为。该项目还通过将设计的学习模型应用于流网络流量来设计和实现数据雕刻技术。此外,该项目通过利用一组勒索软件特定行为来探讨基于主机的预防方法。在此,该项目进行了大规模勒索软件仪器,基于DLL调用的勒索软件敏感性活动,同时根据先验方法设计数据挖掘方法。该项目进一步开发了数据共享功能,以促进访问原始数据和生成的威胁情报。该项目还设计了虚拟实验室的材料,以实现大规模,基于云的研究和培训活动。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为是通过评估而被视为珍贵的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elias Bou-Harb其他文献
On DGA Detection and Classification Using P4 Programmable Switches
- DOI:
10.1016/j.cose.2024.104007 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Ali AlSabeh;Kurt Friday;Elie Kfoury;Jorge Crichigno;Elias Bou-Harb - 通讯作者:
Elias Bou-Harb
Elias Bou-Harb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elias Bou-Harb', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2230086 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2404946 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
OAC Core: Data-driven Methods and Techniques For Protecting Research and Critical Cyberinfrastructure By Characterizing and Defending Against Ransomware
OAC 核心:通过表征和防御勒索软件来保护研究和关键网络基础设施的数据驱动方法和技术
- 批准号:
2104273 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: OAC: Inferring, Attributing, Mitigating and Analyzing the Malicious Orchestration of Internet-scale Exploited IoT Devices: A Network Telescope Approach
CRII:OAC:推断、归因、减轻和分析互联网规模被利用物联网设备的恶意编排:网络望远镜方法
- 批准号:
1953050 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: Small: Devising Data-driven Methodologies by Employing Large-scale Empirical Data to Fingerprint, Attribute, Remediate and Analyze Internet-scale IoT Maliciousness
OAC 核心:小型:通过使用大规模经验数据来指纹识别、归因、修复和分析互联网规模的物联网恶意行为,设计数据驱动的方法
- 批准号:
1907821 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: OAC: Inferring, Attributing, Mitigating and Analyzing the Malicious Orchestration of Internet-scale Exploited IoT Devices: A Network Telescope Approach
CRII:OAC:推断、归因、减轻和分析互联网规模被利用物联网设备的恶意编排:网络望远镜方法
- 批准号:
1755179 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
度量空间中复杂数据的核函数建模方法及其分析
- 批准号:12371277
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
通过反转中子星观测数据约束核物质夸克物质相变性质
- 批准号:12375120
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于核基因数据探讨旧世界热带木本竹类系统发育及演化历史
- 批准号:32300206
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于核和细胞器基因组数据探讨豆科族级分支系统发育关系和物种多样化历史
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于核和细胞器基因组数据探讨豆科族级分支系统发育关系和物种多样化历史
- 批准号:32270247
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
相似海外基金
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:
2403239 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: Improving Data Integrity for HPC Datasets using Sparsity Profile
OAC 核心:使用稀疏性配置文件提高 HPC 数据集的数据完整性
- 批准号:
2312982 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: Towards Zero-Carbon Data Movement at the HPC and Cloud Data Centers with GreenDataFlow
OAC 核心:利用 GreenDataFlow 在 HPC 和云数据中心实现零碳数据移动
- 批准号:
2313061 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313124 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant