I-Corps: Predictive algorithms to determine individual feed intake in beef cattle.
I-Corps:确定肉牛个体采食量的预测算法。
基本信息
- 批准号:2348526
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of an on-farm tool to allow animal agriculture producers to determine how much their animals are eating. Approximately 70% of an animal agriculture operation’s variable cost of production is the cost of feed. However, there are few approaches that allow producers to measure their animals’ feed intake, and the limited number of locations that have that capacity are expensive. The proposed low cost, on-farm tool would allow farmers to identify potential replacement animals that are more efficient, improve how they manage animals in the feedlot and to quantify intakes of animals grazing pasture. Currently there is no way for pasture animal intake to be determined when animals are grazing at scale. If 5% of US beef producers made use of this tool that would be 40,000 operations and likely improve the management decisions related to upwards of 500,000 to a million cattle.This I-Corps project is based on the development of a predictive algorithm to make use of daily animal weight and water intake, along with weather data, to predict daily feed intake. The proposed tool has been trained using data from a specialized feeding barn that has equipment to measure feed intake as well as animal weight and water intake. Currently, state-of-the-art systems significantly over- or under-estimate the actual feed intake. The proposed tool intends to work in situations where either there is not an expensive feed intake system or in extensive grazing pasture situations where weighing feed is not possible. The system has been validated on ~2200 animals fed in the barn and almost 100 animals grazing small plots where a ground truth can be determined for grazing feed intake. Results have shown predictions of individual daily feed intake to within 92-95% accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目的更广泛的影响/商业潜力是开发农场工具,以允许动物农业生产者确定动物的饮食量。动物农业经营可变的生产成本约有70%是饲料成本。但是,很少有方法可以使生产者测量其动物的饲料摄入量,并且具有该容量的位置数量有限。拟议的低成本,农场工具将使农民能够识别出更有效的潜在替代动物,改善它们如何管理饲养场中的动物,并量化动物的摄入量。当前,当动物大规模磨碎时,无法确定牧场动物的摄入量。如果我们中有5%的牛肉生产商使用该工具,该工具将是40,000个操作,并且可能会改善与一百万牛相关的管理决策。此I-Corps项目是基于预测算法的开发,以利用日常动物的体重和水的摄入量,以及天气数据,以预测每日饲料饲料的摄入量。提出的工具已使用来自专门的饲养谷仓的数据进行了培训,该谷仓具有测量饲料摄入量以及动物体重和摄入量的设备。目前,最先进的系统大大过度或低估了实际的饲料摄入量。拟议的工具打算在没有昂贵的进料摄入系统或在不可能进行加权饲料的广泛放牧的牧场情况下工作。该系统已在喂食谷仓中的约2200只动物上进行了验证,近100只动物磨碎了小块,可以确定地面真相以用于摄入饲料。结果表明,个人每日饲料摄入量的预测至92-95%的准确性。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来诚实地通过评估来诚实地支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Wilson其他文献
Advances in Ketogenic Diet Therapies in Pediatric Epilepsy: A Systematic Review.
小儿癫痫生酮饮食疗法的进展:系统评价。
- DOI:
10.4088/pcc.23r03661 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Dilshad Parveen;Vidisha Jain;Dhivya Kannan;Patali Mandava;Marzhan Urazbayeva;Che Marie;Joshua Andrew Sanjeev;Prachi Patel;Kieran McCarthy;Matthew Wilson;Urvish Patel;Ya;Devraj Chavda;Zalak Thakker - 通讯作者:
Zalak Thakker
Quantum and Classical Data Transmission Through Completely Depolarising Channels in a Superposition of Cyclic Orders
通过循环阶叠加的完全去极化通道进行量子和经典数据传输
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Giulio Chiribella;Matthew Wilson;H. F. Chau - 通讯作者:
H. F. Chau
Designing a Peer-to-Peer Facilitated Support Network for Active and Bereaved Care Partners of People with Serious Illness: A Multi-Stakeholder Co-Design Project (QI721)
- DOI:
10.1016/j.jpainsymman.2021.01.053 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:
- 作者:
Matthew Wilson;Beth O'Donnell;Aricca Van Citters;Amelia Cullinan;Megan Holthoff;Eugene Korsunskiy;Stephanie Tomlin;Andrea Buccelleto;J.M. Haines;Anne Holmes;Kristin Johnson;Andrew Williams;Inas Khayal;Amanda Hoggard;Eugene Nelson;Kathy Kirkland - 通讯作者:
Kathy Kirkland
SP420 – The functional and cosmetic Riedel proceedure
- DOI:
10.1016/j.otohns.2009.06.721 - 发表时间:
2009-09-01 - 期刊:
- 影响因子:
- 作者:
Matthew Wilson;Richard Orlandi;Steven Mobley - 通讯作者:
Steven Mobley
Back to BaSICS: February 2022 Annals of Emergency Medicine Journal Club
- DOI:
10.1016/j.annemergmed.2021.12.006 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:
- 作者:
Matthew Wilson;Rory Spiegel - 通讯作者:
Rory Spiegel
Matthew Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Wilson', 18)}}的其他基金
Artificial Intelligence X-ray Imaging for Sustainable Metal Manufacturing (AIXISuMM)
用于可持续金属制造的人工智能 X 射线成像 (AIXISuMM)
- 批准号:
EP/X038394/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Doctoral Dissertation Research: The Impact of Digital Real Estate Technologies on Housing and Home in the US
博士论文研究:数字房地产技术对美国住房和家庭的影响
- 批准号:
2147833 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Uncertainty Assessments of Flood Inundation Impacts: Using spatial climate change scenarios to drive ensembles of distributed models for extremes
洪水淹没影响的不确定性评估:利用空间气候变化情景驱动极端分布式模型集合
- 批准号:
NE/E002293/1 - 财政年份:2007
- 资助金额:
$ 5万 - 项目类别:
Research Grant
CRI: Navigation and the Hippocampus: Computational Models
CRI:导航和海马:计算模型
- 批准号:
9634339 - 财政年份:1996
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
基于深度学习算法的基因变异致病性预测研究
- 批准号:32370657
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于多模态多中心MRI的肝癌微血管浸润深度预测算法及其可解释性研究
- 批准号:62276189
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
基于多模态多中心MRI的肝癌微血管浸润深度预测算法及其可解释性研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
病理-影像深度学习算法对胰腺癌免疫微环境空间结构异质性的构建和预测
- 批准号:82271972
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
机理模型与神经网络融合的锂电池状态预测算法迁移性及解释性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Sensory Phenotyping to Enhance Neuropathic Pain Drug Development
感觉表型增强神经病理性疼痛药物的开发
- 批准号:
10724809 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Improving Prediction of Asthma-related Outcomes with Genetic Ancestry-informed Lung Function Equations
利用遗传祖先信息的肺功能方程改善哮喘相关结果的预测
- 批准号:
10723861 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别: