I-Corps: Predictive algorithms to determine individual feed intake in beef cattle.
I-Corps:确定肉牛个体采食量的预测算法。
基本信息
- 批准号:2348526
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of an on-farm tool to allow animal agriculture producers to determine how much their animals are eating. Approximately 70% of an animal agriculture operation’s variable cost of production is the cost of feed. However, there are few approaches that allow producers to measure their animals’ feed intake, and the limited number of locations that have that capacity are expensive. The proposed low cost, on-farm tool would allow farmers to identify potential replacement animals that are more efficient, improve how they manage animals in the feedlot and to quantify intakes of animals grazing pasture. Currently there is no way for pasture animal intake to be determined when animals are grazing at scale. If 5% of US beef producers made use of this tool that would be 40,000 operations and likely improve the management decisions related to upwards of 500,000 to a million cattle.This I-Corps project is based on the development of a predictive algorithm to make use of daily animal weight and water intake, along with weather data, to predict daily feed intake. The proposed tool has been trained using data from a specialized feeding barn that has equipment to measure feed intake as well as animal weight and water intake. Currently, state-of-the-art systems significantly over- or under-estimate the actual feed intake. The proposed tool intends to work in situations where either there is not an expensive feed intake system or in extensive grazing pasture situations where weighing feed is not possible. The system has been validated on ~2200 animals fed in the barn and almost 100 animals grazing small plots where a ground truth can be determined for grazing feed intake. Results have shown predictions of individual daily feed intake to within 92-95% accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力是开发一种农场工具,使动物农业生产者能够确定其动物的饮食量,动物农业运营的可变生产成本中大约 70% 是成本。然而,很少有方法可以让生产者测量动物的饲料摄入量,而且具有这种能力的地点数量有限,拟议的低成本农场工具将使农民能够识别潜在的替代动物。那些更多如果 5% 的美国牛肉生产商使用此工具,则目前无法确定大规模放牧时牧场动物的摄入量。这将涉及 40,000 次操作,并可能改善与 500,000 到 100 万头牛相关的管理决策。该 I-Corps 项目基于开发预测算法,以利用每日动物体重和水所提出的工具已经使用来自专门饲养仓的数据进行了训练,该饲养仓拥有测量饲料摄入量以及动物体重和水摄入量的设备。该系统明显高估或低估了实际采食量,该工具适用于没有昂贵的采食系统或无法称重饲料的广阔牧场的情况。在谷仓喂养约 2200 只动物近 100 只动物在小块土地上放牧,可以确定放牧采食量的基本事实。结果显示,个体每日采食量的预测准确度在 92-95% 范围内。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持。使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Wilson其他文献
Advances in Ketogenic Diet Therapies in Pediatric Epilepsy: A Systematic Review.
小儿癫痫生酮饮食疗法的进展:系统评价。
- DOI:
10.4088/pcc.23r03661 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Dilshad Parveen;Vidisha Jain;Dhivya Kannan;Patali Mandava;Marzhan Urazbayeva;Che Marie;Joshua Andrew Sanjeev;Prachi Patel;Kieran McCarthy;Matthew Wilson;Urvish Patel;Ya;Devraj Chavda;Zalak Thakker - 通讯作者:
Zalak Thakker
Quantum and Classical Data Transmission Through Completely Depolarising Channels in a Superposition of Cyclic Orders
通过循环阶叠加的完全去极化通道进行量子和经典数据传输
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Giulio Chiribella;Matthew Wilson;H. F. Chau - 通讯作者:
H. F. Chau
Hippocampal memory reactivation during sleep is correlated with specific cortical states of the Retrosplenial and Prefrontal Cortices
睡眠期间海马记忆的重新激活与压后皮质和前额皮质的特定皮质状态相关
- DOI:
10.1101/2023.06.11.544473 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Pedro A. Feliciano;Maria Galazo;Hector Penagos;Matthew Wilson - 通讯作者:
Matthew Wilson
SuperHERO: Design of a new hard-X-ray focusing telescope
SuperHERO:新型硬X射线聚焦望远镜的设计
- DOI:
10.1109/aero.2015.7119097 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Gaskin;R. Elsner;B. Ramsey;C. Wilson;A. Tennant;S. Christe;A. Shih;K. Kilaru;D. Swartz;P. Seller;Matthew Wilson;D. Stuchlik;B. Weddendorf - 通讯作者:
B. Weddendorf
Engaging top-down development in the Eastern Cape : a case study of the Xolobeni Mineral Sands Project.
在东开普省进行自上而下的开发:Xolobeni 矿砂项目的案例研究。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Matthew Wilson - 通讯作者:
Matthew Wilson
Matthew Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Wilson', 18)}}的其他基金
Artificial Intelligence X-ray Imaging for Sustainable Metal Manufacturing (AIXISuMM)
用于可持续金属制造的人工智能 X 射线成像 (AIXISuMM)
- 批准号:
EP/X038394/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Doctoral Dissertation Research: The Impact of Digital Real Estate Technologies on Housing and Home in the US
博士论文研究:数字房地产技术对美国住房和家庭的影响
- 批准号:
2147833 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Uncertainty Assessments of Flood Inundation Impacts: Using spatial climate change scenarios to drive ensembles of distributed models for extremes
洪水淹没影响的不确定性评估:利用空间气候变化情景驱动极端分布式模型集合
- 批准号:
NE/E002293/1 - 财政年份:2007
- 资助金额:
$ 5万 - 项目类别:
Research Grant
CRI: Navigation and the Hippocampus: Computational Models
CRI:导航和海马:计算模型
- 批准号:
9634339 - 财政年份:1996
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
基于多模态多中心MRI的肝癌微血管浸润深度预测算法及其可解释性研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
病理-影像深度学习算法对胰腺癌免疫微环境空间结构异质性的构建和预测
- 批准号:82271972
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
机理模型与神经网络融合的锂电池状态预测算法迁移性及解释性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于因果推断和物理引导的面向天气预报与气候预测的深度学习理论算法及可解释性研究
- 批准号:U2142211
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:专项基金项目
病毒宿主和感染性预测及病毒系统分类的算法研究
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Sensory Phenotyping to Enhance Neuropathic Pain Drug Development
感觉表型增强神经病理性疼痛药物的开发
- 批准号:
10724809 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Improving Prediction of Asthma-related Outcomes with Genetic Ancestry-informed Lung Function Equations
利用遗传祖先信息的肺功能方程改善哮喘相关结果的预测
- 批准号:
10723861 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别: