Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis

合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力

基本信息

  • 批准号:
    2306660
  • 负责人:
  • 金额:
    $ 72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

This project will develop a novel exoskeleton to improve walking in real-world environments. When people age and their muscle functions decline, it can limit their ability to generate enough ankle push-off power to walk normally. Mobility-challenged older adults often walk unnaturally and inefficiently. For example, they may compensate for reduced ankle push-off action by overusing the hip. This behavior not only affects the long-term health of the related leg joints, but also causes accelerated decline of physical mobility. Such mobility decline has profound impacts on older adults’ lifestyles, as well as their long-term physical and psychological health. As walking speed decreases, an elderly individual may experience unexpected difficulties in his/her daily activities (e.g., being unable to cross a busy street before the light changes). When walking becomes more strenuous, an older adult is more likely to be physically inactive and suffer from the multiple health problems associated with such a sedentary lifestyle (high blood pressure, obesity, depression, etc.). Motivated by this significant challenge, our research in this project will be dedicated to the development of a new robotic ankle-foot orthosis (exoskeleton) system to assist the user’s ankle movement when walking in real-world environments. With the robotic orthosis’ assistance, older adults may walk more naturally and efficiently with the enhanced ankle push-off, and thus enjoy significantly improved gait ability and physical mobility in their daily lives.The project will conduct multiple research activities towards the creation of the proposed robotic ankle-foot orthosis (AFO) system. It will design and fabricate a compact and lightweight Daily-Use Robotic Ankle-Foot Orthosis (DUR-AFO) to provide the desired physical assistance with little additional load to the user. Through its powered assistance to the ankle, the DUR-AFO is anticipated to induce elderly individuals to augment their ankle push-off for a more natural and efficient gait (closer to younger healthy gait) and thus improve their gait ability. Further, the project will conduct biomechanical research to investigate the human gait-control mechanisms under independently controlled bilateral robot assistance in real-world locomotion (walking and turning); we will also explore the novel approach of using real-time information feedback (vibrotactile prompts, audio cues, etc.) to empower and motivate users to maintain a desired level of muscle efforts while enjoying the powered assistance by the DUR-AFO. Finally, the project will develop a novel Reinforcement Learning (RL)-based cyber system as the basis of the human-robot synergistic collaborative system, providing multiple important functions such as adapting the robot control parameters for gait quality optimization, determining the real-time feedback to the human user, and identifying the human motion intent in the form of the desired mode of locomotion. Overall, this novel human-robot synergistic collaboration framework not only optimizes the performance of the robot assistance to the human movement, but also promotes the human user’s beneficial behavioral changes (“maintaining a desired level of muscle efforts in walking exercise”) towards the shared goal of the human-robot system (“improving the human’s gait ability and overall mobility in daily-life activities”). This project is jointly funded by Smart and Connected Health and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发一种新型外骨骼,以改善在现实环境中的行走。当人们年龄增长且肌肉功能下降时,它会限制他们产生足够的脚踝推力以正常行走的能力,而行动不便的老年人通常会不自然地行走。例如,他们可能会通过过度使用臀部来补偿脚踝的推离动作,这种行为不仅会影响相关腿部关节的长期健康,还会导致身体活动能力的加速下降。对老年人的广泛影响成年人的生活方式以及长期的身心健康随着步行速度的降低,老年人的日常活动可能会遇到意想不到的困难(例如,无法在交通灯改变之前穿过繁忙的街道)。当步行变得更加费力时,老年人更有可能缺乏身体活动,并遭受与这种久坐生活方式相关的多种健康问题(高血压、肥胖、抑郁等)。在这个项目中将致力于开发一种新型机器人踝足矫形器(外骨骼)系统,以帮助用户在现实环境中行走时进行踝关节运动。在机器人矫形器的帮助下,老年人可以通过增强的踝关节推动力更加自然、高效地行走。从而在日常生活中享受显着改善的步态能力和身体活动能力。该项目将开展多项研究活动,以创建拟议的机器人踝足矫形器(AFO)系统,它将设计和制造一个紧凑且轻便的系统。日常使用的机器人踝足矫形器 (DUR-AFO) 可以为用户提供所需的身体帮助,而几乎不会给用户带来额外的负担。通过对脚踝的动力辅助,DUR-AFO 有望诱导老年人增强脚踝的推力。 -off 以获得更自然、更高效的步态(更接近年轻健康的步态),从而提高他们的步态能力。此外,该项目还将进行生物力学研究,以研究在独立控制的双边机器人辅助下的人类步态控制机制。现实世界的运动(行走和转弯);我们还将探索使用实时信息反馈(振动触觉提示、音频提示等)的新颖方法,以增强和激励用户在享受运动的同时保持所需的肌肉力量水平最后,该项目将开发一种新型的基于强化学习(RL)的网络系统,作为人机协同协作系统的基础,提供多种重要功能,例如调整机器人控制参数。步态质量优化,确定对人类用户的实时反馈,并以所需运动模式的形式识别人类运动意图总体而言,这种新颖的人机协同协作框架不仅优化了机器人辅助的性能。不仅影响人类运动,而且还促进人类用户有益的行为变化(“在步行锻炼中保持所需的肌肉力量水平”),以实现人机系统的共同目标(“提高人类的步态能力和整体能力”)。该项目由智能互联健康和刺激竞争研究既定计划 (EPSCoR) 共同资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

He Huang其他文献

Research on provincial carbon quota allocation under the background of carbon neutralization
碳中和背景下省级碳配额分配研究
  • DOI:
    10.1016/j.egyr.2022.02.023
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Bo Chen;Hongyu Zhang;Wei Li;Hongyu Du;He Huang;Yao Wu;Simin Liu
  • 通讯作者:
    Simin Liu
TRACKING DEEP ANCIENT CRUSTAL COMPONENTS BY XENOCRYSTIC ZIRCONS OF PALEOZOIC FELSIC IGNEOUS ROCKS FROM THE ALTAI-EAST JUNGGAR TERRANE AND ADJACENT REGIONS AND ITS TECTONIC SIGNIFICANCE
阿尔泰东准噶尔地体及邻区古生界长英质火成岩深部古地壳成分的异晶锆石追踪及其构造意义
  • DOI:
    10.5800/gt-2017-8-3-0305
  • 发表时间:
    2017-10-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jian;Tao Wang;Y. Tong;Zhaochong Zhang;He Huang;Lei Zhang;Lei Guo;P. Song;Z. Hou
  • 通讯作者:
    Z. Hou
Confining Natural/Mimetic Enzyme Cascade in an Amorphous Metal-Organic Framework for the Construction of Recyclable Biomaterials with Catalytic Activity.
将天然/模拟酶级联限制在非晶态金属有机框架中,用于构建具有催化活性的可回收生物材料。
Robust H ∞ Filter Design of Delayed Neural Networks
延迟神经网络的鲁棒H→滤波器设计
  • DOI:
    10.1007/978-3-642-21105-8_35
  • 发表时间:
    2011-05-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    He Huang;Xiaoping Chen
  • 通讯作者:
    Xiaoping Chen
Mechanism of Th4+, Zr4+ doping in PbWO4 crystals
PbWO4晶体中Th4,Zr4的掺杂机理
  • DOI:
    10.1016/s0038-1098(02)00801-3
  • 发表时间:
    2003-02-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    W. L. Zhu;He Huang;Xi;M. Kobayashi;Y. Usuki
  • 通讯作者:
    Y. Usuki

He Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('He Huang', 18)}}的其他基金

Collaborative Research: HCC: Medium: Learning to coordinate between human and a robotic prosthesis for symbiotic locomotion
合作研究:HCC:中:学习协调人类和机器人假体之间的共生运动
  • 批准号:
    2211739
  • 财政年份:
    2022
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
CHS: Medium: A Bi-directional Neural Interface for Bionic Prosthetic Legs
CHS:中:仿生假肢的双向神经接口
  • 批准号:
    1954587
  • 财政年份:
    2020
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Electromyography (EMG)-Based Assistive Human-Machine Interface Design: Cognitive Workload and Motor Skill Learning Assessment
CHS:媒介:协作研究:基于肌电图 (EMG) 的辅助人机界面设计:认知工作量和运动技能学习评估
  • 批准号:
    1856441
  • 财政年份:
    2019
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
Integrating Human Wearers' Perception and Cognition into Prosthesis Control Policy
将人类佩戴者的感知和认知纳入假肢控制政策
  • 批准号:
    1926998
  • 财政年份:
    2019
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
Collaborative Research: Reinforcement learning based adaptive optimal control of powered knee prosthesis for human users in real life
协作研究:基于强化学习的现实生活中人类用户动力膝关节假体的自适应最优控制
  • 批准号:
    1808898
  • 财政年份:
    2018
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Novel Optimal Control for Co-Adaptation of Human and Powered Lower Limb Prosthesis
CHS:媒介:协作研究:人类和动力下肢假肢共同适应的新型最优控制
  • 批准号:
    1563454
  • 财政年份:
    2016
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
NRI: Novel Prosthetic Arm Control Based on a Low-Dimensional Internal Musculoskeletal Biomechanical (LIMB) Model
NRI:基于低维内部肌肉骨骼生物力学 (LIMB) 模型的新型假肢控制
  • 批准号:
    1527202
  • 财政年份:
    2015
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Analyzing User-Prosthesis Interaction for Designing a Volitional Controller for Powered Lower Limb Prostheses
职业:理解和分析用户假肢交互,以设计动力下肢假肢的意志控制器
  • 批准号:
    1406750
  • 财政年份:
    2013
  • 资助金额:
    $ 72万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research: Neural Control of Powered Artificial Legs
HCC:媒介:合作研究:动力假腿的神经控制
  • 批准号:
    1361549
  • 财政年份:
    2013
  • 资助金额:
    $ 72万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research: Neural Control of Powered Artificial Legs
HCC:媒介:合作研究:动力假腿的神经控制
  • 批准号:
    1302196
  • 财政年份:
    2013
  • 资助金额:
    $ 72万
  • 项目类别:
    Continuing Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
  • 批准号:
    2306572
  • 财政年份:
    2023
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306659
  • 财政年份:
    2023
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306792
  • 财政年份:
    2023
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
  • 批准号:
    2320678
  • 财政年份:
    2023
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306659
  • 财政年份:
    2023
  • 资助金额:
    $ 72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了