ERI: Aqueous Phase Reforming of Multi-Component Carboxylic Acid Systems over Pt Catalysts
ERI:Pt 催化剂上多组分羧酸体系的水相重整
基本信息
- 批准号:2347256
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Renewable fuel and chemical manufacturing raises significant challenges due to the complex chemistry of biomass sources. Biorefineries show promise for renewably converting biomass to biofuels and chemicals; however, significant inefficiencies are present, as the wastewater streams have high concentrations of dissolved oxygenated hydrocarbons. Aqueous phase reforming (APR) offers a solution by converting these wastewater streams into renewable hydrogen with catalysts. Traditional catalysts display poor APR performance due to strong, nanoscale chemical interactions between different biomass-based chemicals at the interface between the catalyst surface and the wastewater stream. To accelerate the development of high performing APR catalysts, the project will connect experimentally controllable conditions, such as the composition and temperature, to the structure and reactivity of catalytic interfaces. This will be achieved by investigating the nanoscale interactions between a series of biomass-based molecules at a platinum-water interface. Furthermore, the project will enhance science and engineering education by applying virtual reality to enable students to visualize molecular systems at the nanoscale and connect their observations to macroscale chemical properties. Despite APR's potential, studies often overlook the multi-component nature of real biomass-based feedstocks, leading to suboptimal catalyst performance. Leveraging multiscale computational modeling and experimental collaboration, the project will provide insights regarding the interplay between aqueous phase properties and solid-liquid catalytic interfaces. Specifically, the project focuses on characterizing the competitive adsorption and potential energy surface for decomposition of binary carboxylic acid mixtures at a platinum-water interface. Experimentally controllable conditions (i.e., composition and temperature) will be connected to the structure and reactivity of the platinum-water interface via a combination of atomic-scale electronic calculations (i.e. density functional theory) and force field molecular dynamics simulations. Insights gained will inform the design of deactivation-resistant APR catalysts and advance understanding of competitive adsorption and catalytic reactions at complex interfaces. Furthermore, this research aligns with societal goals of biomass utilization and hydrogen economy development, with integrated education and outreach efforts targeting graduate and undergraduate students, including those from underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于生物量来源的复杂化学,可再生燃料和化学制造公司引起了重大挑战。生物精制表现出有望重新将生物量转化为生物燃料和化学物质的希望。然而,由于废水流具有高浓度的溶解氧烃,因此存在明显的低效率。水相改革(APR)通过将这些废水流转换为用催化剂的可再生氢提供了解决方案。传统的催化剂由于在催化剂表面和废水流之间的界面上不同的基于生物质的化学物质之间的强烈的纳米级化学相互作用而表现出较差的APR性能。为了加速高性能APR催化剂的发展,该项目将将实验可控条件(例如成分和温度)连接到催化界面的结构和反应性。这将通过研究铂 - 水界面上一系列基于生物质的分子之间的纳米级相互作用来实现。此外,该项目将通过应用虚拟现实来使学生能够可视化纳米级的分子系统并将其观察结果与宏观化学特性联系起来,从而增强科学和工程教育。尽管APR具有潜力,但研究经常忽略实际生物量原料的多组分性质,从而导致了次优催化剂的性能。利用多尺度计算建模和实验协作,该项目将提供有关水相性能与固体催化界面之间相互作用的见解。具体而言,该项目着重于表征竞争吸附和势能表面,以分解铂 - 水界面上二元羧酸混合物。实验可控条件(即组成和温度)将通过原子级电子计算(即密度功能理论)和力场分子动力学模拟的组合连接到铂水界面的结构和反应性。 获得的见解将为抗衰活的APR催化剂的设计提供信息,并提高对复杂界面上竞争吸附和催化反应的了解。 此外,这项研究符合生物量利用和氢经济发展的社会目标,以及针对毕业生和本科生的综合教育和外展工作,包括代表性不足的群体的综合教育和外展工作。这项奖项反映了NSF的法定任务,并被认为是通过使用评估的值得支持的。基金会的智力优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alyssa Hensley其他文献
Alyssa Hensley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水性类液聚合物涂层的设计及其防污阻垢机理研究
- 批准号:22375047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
构筑多级孔疏水性分子筛@聚合物核壳材料协同强化苯系VOCs吸附/扩散机制研究
- 批准号:52360028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
FePt系高熵纳米催化剂成分设计、结构调控及电解水性能
- 批准号:52301234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过水性湖泊中水流特性对典型PPCPs食物链传递影响及其驱动机制
- 批准号:42307464
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
兼具高强度和耐水性的可闭环回收可逆交联塑料
- 批准号:22305092
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
BRITE Synergy: Chemically Resilient, Fouling Resistant Separation Membranes Manufactured Using Aqueous Phase Inversion
BRITE Synergy:采用水相转化技术制造的化学弹性、防污分离膜
- 批准号:
2227307 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
- 批准号:
2240281 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
- 批准号:
2240282 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Developing an integrated pipeline for routine generation of orthogonal GPCR-targeting nanobodies
开发用于常规生成正交 GPCR 靶向纳米抗体的集成管道
- 批准号:
10603669 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别: