Research Infrastructure: CC* Data Storage: Broadening UMBCs Data Storage footprint to Advance Scientific Research and Discovery

研究基础设施:CC* 数据存储:扩大 UMBC 数据存储足迹以推进科学研究和发现

基本信息

  • 批准号:
    2346667
  • 负责人:
  • 金额:
    $ 49.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

The Retriever Research Storage System R-RSTOR enables UMBC researchers and collaborators to address important research in atmospheric science, analyze polar ice caps, and develop AI models for human and robotic interactions. The system supports increased collaborations with the University of Maryland Center for Environmental Science (UMCES) on research into the ecology of the Chesapeake Bay and its watershed, as well as broader community access through the Open Science Data Federation. Utilizing the open-source Ceph file system that provides a flexible, high-performance, cost-effective, and scalable file architecture that will allow us to greatly expand allocations for all faculty conducting research.This system integrates with UMBC's existing High-Performance Computing Facility and Science DMZ to streamline interdisciplinary and inter-institutional collaborations. R-RSTOR is designed to utilize low latency non-volatile memory express (NVME) components and large-scale multi-petabyte solid state disc to reduce complexities and costs associated with data manipulation and transfer, which shortens the time to research. The Ceph file system allows researchers the ability to handle file, block, and object-based file structures within a single system. Through the additional gateways running on the system, researchers can utilize application programming interfaces (APIs) for enhanced data mobility between on-premises and cloud environments, accommodating evolving computational requirements as more workloads shift to a hybrid cloud model.This award by the Office of Advanced Cyberinfrastructure is also supported by National Discovery Cloud for Climate (NDC-C) resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
回猎犬研究存储系统R-RSTOR使UMBC的研究人员和合作者能够解决大气科学领域的重要研究,分析极地冰盖,并为人类和机器人相互作用开发AI模型。 该系统支持与马里兰州环境科学中心(UMCE)有关Chesapeake Bay及其流域生态学的研究以及通过开放科学数据联合会的更广泛的社区访问。利用开源CEPH文件系统,该系统提供了灵活,高性能,具有成本效益和可扩展的文件架构,这将使我们能够为所有教师进行研究大大扩展分配。该系统与UMBC现有的高表现计算机和科学DMZ集成,以简化跨学科和跨学科的合作。 R-RSTOR旨在利用低潜伏期非易失性记忆快递(NVME)组件和大规模的多核固态固态光盘来降低与数据操作和传输相关的复杂性和成本,从而缩短了研究时间。 CEPH文件系统允许研究人员能够处理单个系统中的文件,块和基于对象的文件结构。 Through the additional gateways running on the system, researchers can utilize application programming interfaces (APIs) for enhanced data mobility between on-premises and cloud environments, accommodating evolving computational requirements as more workloads shift to a hybrid cloud model.This award by the Office of Advanced Cyber​​infrastructure is also supported by National Discovery Cloud for Climate (NDC-C) resources.This award reflects NSF's statutory mission and has been deemed值得通过基金会的智力优点和更广泛的影响审查标准来通过评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Damian Doyle其他文献

Damian Doyle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Damian Doyle', 18)}}的其他基金

CC* Regional: Advancing Maryland Research and Education Network for Under-Resourced Institutions Through a Science DMZ and 10Gbps Upgrade
CC* 区域:通过科学 DMZ 和 10Gbps 升级为资源不足的机构推进马里兰州研究和教育网络
  • 批准号:
    2018823
  • 财政年份:
    2020
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Continuing Grant

相似国自然基金

大型交通基础设施建设行为与生态环境非对称耦合机理研究
  • 批准号:
    72371043
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于生成性IT基础设施的组织敏捷性构建机制研究
  • 批准号:
    72302015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
供需视角下城市绿色基础设施格局演化、机理与调控——以南京市为例
  • 批准号:
    42371318
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
数字基础设施建设与中国3E绩效:机制、效应与政策研究
  • 批准号:
    72304001
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
跨界基础设施的共建机制与区域效应研究——以长三角城际“断头路”连通为例
  • 批准号:
    42301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
  • 批准号:
    2346636
  • 财政年份:
    2024
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
  • 批准号:
    2346712
  • 财政年份:
    2024
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant
Research Infrastructure: CC*Networking Infrastructure: Deep Soil to Supercomputing - Infrastructure Enhancements as a Force Multiplier for Idaho Research
研究基础设施:CC*网络基础设施:从深层到超级计算 - 基础设施增强是爱达荷州研究的力量倍增器
  • 批准号:
    2346652
  • 财政年份:
    2024
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant
Research Infrastructure: CC* Campus Compute: Lawrence 2.0: Advancing Multi-Disciplinary Research and Education in South Dakota
研究基础设施:CC* 校园计算:Lawrence 2.0:推进南达科他州的多学科研究和教育
  • 批准号:
    2346643
  • 财政年份:
    2024
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了