Uncovering the Underlying Biophysical Mechanisms of Directed Cell Migration

揭示定向细胞迁移的潜在生物物理机制

基本信息

  • 批准号:
    2345411
  • 负责人:
  • 金额:
    $ 104.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

Matrix-guided cell migration is fundamental to tissue formation, and its dysregulation is crucial in various diseases. Despite this importance, how cells coordinate probing their environment with forward movement remains unknown. This project examines actin cytoskeletal networks and adhesion receptors as integral yet distinct subsystems — akin to an airplane’s wings and tail, which are critical for lift, stability, and steering. Just as both the ailerons and rudder are necessary for an airplane’s maneuvering yet are ineffective in isolation, this project will explore the interdependence of actin network subsystems in steering and powering cell migration. Using nanofabricated matrices designed to direct cellular behavior towards single migration behaviors, the study will identify the parts within each subsystem and how they interact to create matrix-guided migration. The broader impacts include engaging high school students in cell motility challenge experiments using student-designed nanofabricated matrices and establishing ‘The A-mazing Cell Races’ website to present the results and engage the public with the dynamics of cell biology. The project’s innovative strategy of forcing a single cellular function and identifying the parts that create the function is a transformative approach to studying complex systems that cannot be separated using traditional biochemical or molecular approaches. Cells use actin-based protrusions to probe the ECM for places to bind and form anchors to pull themselves forward. Extensive studies have revealed that protrusions contain multiple actin networks with different structures. However, understanding each network’s role in probing and forward movement has been limited. The networks cannot be isolated without inducing compensatory effects, and they cannot probe or bind ECM without receptors. Yet, the networks are not thought to connect to receptors until the receptors bind to ECM. This proposal targets these significant gaps by considering actin networks and ECM receptors as complex systems, an assembly of parts that produces more functionality than its components. However, as many of us learned as children who took something apart to figure out how it worked and ended up with a box of parts that could not be put back together, some hidden randomness, hierarchy, or collective dynamic essential for functionality disappears when pieces are removed. This project will study ECM-guided cell migration as a complex system composed of non-separable, hierarchical, interactive, dynamic ECM receptor–actin network subsystems that regulate probing and forward migration. Using nanofabricated ECM substrates will identify the subsystems and determine how they respond to substrate cues at the cellular, sub-cellular, and single-molecule levels. Challenging the cells to engage multiple subsystems to navigate complex challenges using ECM mazes will define the subsystem hierarchy of action for each choice and enable the use of graph theory to model cells navigating these complex challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基质引导的细胞迁移是组织形成的基础,其失调在各种疾病中至关重要。尽管很重要,但细胞如何与向前运动进行探测其环境仍然未知。该项目将肌动蛋白细胞骨架网络和粘合剂受体视为不可或缺但独特的子系统 - 类似于飞机的机翼和尾巴,这对于升力,稳定性和转向至关重要。正如飞机的操纵所必需的,既然是孤立的,那么该项目也将探索肌动蛋白网络子系统在转向和动力电池迁移方面的相互依存关系。该研究使用旨在将细胞行为引向单个迁移行为的纳米制造物质,将确定每个子系统中的部分以及它们如何相互作用以创建矩阵引导的迁移。更广泛的影响包括使用学生设计的纳米制造物质与高中生进行细胞运动挑战实验,并建立“ A-Mazing Cell Races”网站以呈现结果,并以细胞生物学的动态吸引公众。该项目迫使单个细胞功能并确定创建该功能的部分的创新策略是研究复杂系统的一种变革性方法,该方法无法使用传统的生化或分子方法进行分离。细胞使用基于肌动蛋白的突起来探测ECM的绑定和形成锚以向前拉的位置。广泛的研究表明,蛋白质包含具有不同结构的多个肌动蛋白网络。但是,了解每个网络在探测和向前运动中的作用是有限的。没有诱导的补偿效应,无法隔离网络,并且它们不能在没有受体的情况下探测或结合ECM。但是,直到受体与ECM结合之前,网络才被认为与受体连接。该提案通过将肌动蛋白网络和ECM接收器视为复杂系统来针对这些显着差距,该系统的组合比其组件产生更多的功能。但是,正如我们许多人所学到的那样,他们把一些东西分开来弄清楚它是如何工作的,并最终得到了一盒无法放回的零件,当删除零件时,功能的一些隐藏的随机性,层次结构或集体动态必不可少。该项目将研究ECM引导的细胞迁移作为一个复杂的系统,该系统由不可分离,分层,交互式,动态的ECM受体 - 肌动蛋白网络子系统组成,该系统调节探测和正向迁移。使用纳米制造的ECM底物将识别子系统,并确定它们对细胞,亚细胞和单分子水平的底物线索的反应。挑战细胞以使用ECM迷宫来吸引多个子系统以应对复杂的挑战,将定义每种选择的子系统层次结构,并使使用图理论可以模拟这些复杂的挑战。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识优点和广泛影响来评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catherine Galbraith其他文献

Catherine Galbraith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

树脂糖苷类Sec61α抑制剂的发现及其潜在抗冠状病毒活性研究
  • 批准号:
    32370419
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
气候变暖对青藏高原高寒草甸土壤病毒多样性和潜在功能的影响
  • 批准号:
    32301407
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子双锁相放大测量的原理与潜在应用
  • 批准号:
    12305022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
潜在转脂蛋白VPS13B介导细胞器互作的细胞生物学功能及其机制研究
  • 批准号:
    32371343
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于土—水耦合作用的潜在滑坡堵江灾害链早期识别与危险性定量预测
  • 批准号:
    42377193
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Identifying mechanisms underlying sex differences in motoneuron discharge
识别运动神经元放电性别差异的机制
  • 批准号:
    10751793
  • 财政年份:
    2023
  • 资助金额:
    $ 104.95万
  • 项目类别:
Elucidation of the theory underlying microbial community dynamics in spontaneous sourdough fermentation
阐明自发酵母发酵中微生物群落动态的理论
  • 批准号:
    23K13873
  • 财政年份:
    2023
  • 资助金额:
    $ 104.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unexpected mechanism underlying mislocalization of thrombocytopenia-associated ETV6 point mutation
血小板减少症相关 ETV6 点突变错误定位的意外机制
  • 批准号:
    10605685
  • 财政年份:
    2023
  • 资助金额:
    $ 104.95万
  • 项目类别:
FX ENTRAIN: Perturbation of neurodynamics underlying sensory hyperarousal and statistical learning in Youth with FXS
FX ENTRAIN:FXS 青少年感觉过度唤醒和统计学习背后的神经动力学扰动
  • 批准号:
    10585050
  • 财政年份:
    2023
  • 资助金额:
    $ 104.95万
  • 项目类别:
Mechanism underlying cofactor-dependent proteolysis of von Willebrand Factor
冯维勒布兰德因子辅因子依赖性蛋白水解的机制
  • 批准号:
    10376469
  • 财政年份:
    2022
  • 资助金额:
    $ 104.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了