CAREER: Hydrogen-Bonded Organic Frameworks Nanoparticles for Ultrasound-Activated, Genetically-Targeted Neuromodulation
职业:用于超声激活、基因靶向神经调节的氢键有机框架纳米颗粒
基本信息
- 批准号:2340964
- 负责人:
- 金额:$ 50.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThis project explores creating new nanoparticles for studying the brain. Over the last ten years, scientists have used a technique called optogenetics to understand how brains work. With optogenetics, researchers control specific brain cells using light. The problem is that delivering this light often requires surgery, which can harm the brain's neurons. Instead, the team is developing nanoparticles and using ultrasound waves to achieve the same results without surgery. These nanoparticles, made of special materials called hydrogen-bonded organic frameworks, can emit light or release chemicals when hit by ultrasound waves. By altering the molecules inside them, the color of the emitted light changes after ultrasound exposure. Also, altering the nanoparticle structures allows control over the amounts of released chemicals upon ultrasound impact. The resulting light or chemicals can control certain brain neurons without harming the brain tissues. Beyond the science, the project includes an outreach program named "Biomaterials Research in Engineering." It aims to get Austin Community College students more interested in engineering, especially those who have not considered it before. Through a mix of theory and hands-on activities, the program seeks to spark interest and improve diversity in engineering fields. By overcoming current method challenges, this research not only increases scientific knowledge of hydrogen-bonded organic frameworks nanoparticles but also develops better technologies for understanding and treating brain diseases. The inclusion of the outreach program reflects a commitment to diversity and inclusion in engineering fields, crucial for the long-term health and innovation of the scientific community.TECHNICAL SUMMARYThis research project aims to advance the fields of optogenetics and chemogenetics through the innovative development of hydrogen-bonded organic frameworks (HOFs) nanoparticles for ultrasound-triggered neuromodulation. Existing challenges in optogenetics, notably the necessity for invasive optical fiber implantation, emphasize the need for exploring sono-optogenetics, a paradigm where nanoparticles are activated by focused ultrasound (FUS). The envisioned HOFs nanoparticles, intricately assembled through multi-hydrogen bonds and π-π stacking are desirable for achieving non-invasive optogenetic and chemogenetic control over neural activity. An important goal is to design a versatile emission platform of luminophores activated by ultrasound, for control of multi-colored opsins in optogenetics. Furthermore, the research outlines the customization of HOFs nanoparticles for precise and controlled ultrasound-triggered drug release in chemogenetics. The key focus lies in manipulating cohesive energy by modulating the number of hydrogen bonds and π-π interactions within the HOFs structure, presenting an innovative approach to achieving programmable drug delivery. The proposed technical approach not only expands our understanding of HOFs as biomaterials but also holds the potential to significantly impact neuroscience research and therapeutic interventions for neurological diseases. Beyond its technical scope, this project incorporates a significant broader impact through the initiation of the "biomaterials research in engineering" (BRING) outreach program. This program is designed to engage underrepresented engineering students at Austin Community College (ACC) in theoretical and practical modules related to biomaterials research. This research has a profound impact on advancing our fundamental understanding of HOFs as biomaterials, thereby influencing the development of technologies for neuroscience research and therapeutic applications in neurological diseases. The involvement of science, technology, engineering and mathematics (STEM) students, particularly those underrepresented at ACC, aligns with a broader commitment to promoting diversity and inclusion in the scientific community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结项目探讨了创建用于研究大脑的新纳米颗粒。在过去的十年中,科学家使用了一种称为光遗传学的技术来了解大脑的工作原理。使用光遗传学,研究人员使用光控制特定的脑细胞。问题在于,传递此光通常需要手术,这可能会损害大脑的神经元。取而代之的是,该团队正在开发纳米颗粒,并使用超声波在不手术的情况下实现相同的结果。这些纳米颗粒由特殊材料制成,称为氢键有机框架,当被超声波击中时,可以发出光或释放化学物质。通过改变它们内部的分子,超声暴露后发出的光的颜色变化。同样,改变纳米颗粒结构可以控制超声冲击时释放的化学物质的量。所得的光或化学物质可以控制某些脑神经元而不会损害脑组织。除了科学外,该项目还包括一个名为“工程生物材料研究”的外展计划。它的目的是使奥斯汀社区大学的学生对工程更感兴趣,尤其是那些以前从未考虑过的人。通过理论和动手活动的混合,该计划试图激发工程领域的兴趣并提高多样性。通过克服当前方法的挑战,这项研究不仅增加了氢键有机框架纳米颗粒的科学知识,而且还开发了更好的理解和治疗脑疾病的技术。外展计划的包含反映了对工程领域的多样性和包容性的承诺,对于科学界的长期健康和创新至关重要。技术摘要摘要旨在通过氢键键入的有机框架(Hofs)Nananoptripe的创新开发来推进光遗传学和化学遗传学的领域。现有的光遗传学挑战,尤其是侵入性光纤植入所必需的,强调需要探索Sono-Optogenetics,这是一种范式,其中纳米颗粒被聚焦超声(FUS)激活。通过多氢键和π-π堆积精致组装的设想的HOF纳米颗粒对于实现神经元活性的非侵入性光遗传学和化学遗传控制是必需的。一个重要的目标是设计由超声激活的发光器的多功能发射平台,以控制光遗传学中的多色opsins。此外,该研究概述了HOFS纳米颗粒的定制,以精确并受控超声触发的药物释放化学遗传学。关键重点在于通过调节HOFS结构内的氢键和π-π相互作用的数量来操纵凝聚力,从而提出了一种创新的方法来实现可编程药物的递送。提出的技术方法不仅扩大了我们对HOF作为生物材料的理解,而且还具有对神经科学疾病的神经科学研究和治疗干预的潜力。除了其技术范围之外,该项目还通过“工程生物材料研究”(Bring)外展计划的计划纳入了更广泛的影响。该计划旨在参与奥斯汀社区学院(ACC)的代表性不足的工程专业学生,参与与生物材料研究有关的理论和实用模块。这项研究对推进我们对HOF作为生物材料的基本理解有深远的影响,从而影响了神经科学研究技术和神经系统疾病中治疗应用的发展。科学,技术,工程和数学(STEM)学生的参与,尤其是在ACC中的人数不足的学生,与更广泛的承诺相吻合,致力于促进科学社区的多样性和包容性。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛的影响来评估CRETERIA CREITERIA CRITERIA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huiliang Wang其他文献
Dramatically enhancing mechanical properties of hydrogels by drying reactive polymers at elevated temperatures to introduce strong physical and chemical crosslinks
通过在高温下干燥反应性聚合物以引入强物理和化学交联,显着增强水凝胶的机械性能
- DOI:
10.1016/j.polymer.2022.124842 - 发表时间:
2022-05 - 期刊:
- 影响因子:4.6
- 作者:
Yuqing Wu;Tianqi Liu;Yunqi Shi;Huiliang Wang - 通讯作者:
Huiliang Wang
Study of spatial distribution characteristics of river eco-environmental values based on emergy-GeoDa method
基于emergy-GeoDa方法的河流生态环境价值空间分布特征研究
- DOI:
10.1016/j.scitotenv.2021.149679 - 发表时间:
2022 - 期刊:
- 影响因子:9.8
- 作者:
Zening Wu;Fengyi Zhang;Danyang Di;Huiliang Wang - 通讯作者:
Huiliang Wang
Protocol to fabricate a self-adhesive and long-term stable hydrogel for sleep EEG recording
用于睡眠脑电图记录的自粘且长期稳定的水凝胶的制备方案
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ju;Mengmeng Yao;Benjamin Baird;Huiliang Wang - 通讯作者:
Huiliang Wang
Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells
磁性 Fe3O4 纳米颗粒催化化学发光检测活细胞中的一氧化氮
- DOI:
10.1007/s00216-016-9646-1 - 发表时间:
2016-06 - 期刊:
- 影响因子:0
- 作者:
Huiliang Wang;Mei Li;Bing Wang;Meng Wang;Ibrahim Kurash;Xiangzhi Zhang;Weiyue Feng - 通讯作者:
Weiyue Feng
Improving the Adhesion of Polyethylene by UV Grafting
- DOI:
10.1080/00218460600775815 - 发表时间:
2006-06 - 期刊:
- 影响因子:0
- 作者:
Huiliang Wang - 通讯作者:
Huiliang Wang
Huiliang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huiliang Wang', 18)}}的其他基金
I-Corps: Translation Potential of a Wearable, Brain-computer Interface System for In-home Stroke Rehabilitation
I-Corps:可穿戴脑机接口系统在家庭中风康复中的转化潜力
- 批准号:
2420836 - 财政年份:2024
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant
相似国自然基金
新型异戊烯基二氢黄酮类组织蛋白酶K抑制剂的结合位点确证及其抗骨质疏松作用机制研究
- 批准号:81903618
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
双氢青蒿素通过上调铁结合蛋白自噬性降解诱导膀胱癌细胞铁死亡(ferroptosis)机制的研究
- 批准号:81702526
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
AUF1与二氢叶酸还原酶反义RNA相互作用调控自由基生成对放射性皮肤损伤的影响及机制研究
- 批准号:31770911
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
MeCP2-miR-22-MTHFD2/MTHFR轴对胃癌表观调控机制的研究
- 批准号:81772985
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
氢氧燃料电池氢阳极金属-金属化合物复合催化剂的理论设计与筛选
- 批准号:21576032
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Designing Elastic Hydrogen-bonded Crosslinked Porous Organic Materials
职业:设计弹性氢键交联多孔有机材料
- 批准号:
2413574 - 财政年份:2024
- 资助金额:
$ 50.83万 - 项目类别:
Continuing Grant
CAREER: Designing Elastic Hydrogen-bonded Crosslinked Porous Organic Materials
职业:设计弹性氢键交联多孔有机材料
- 批准号:
1844920 - 财政年份:2019
- 资助金额:
$ 50.83万 - 项目类别:
Continuing Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
- 批准号:
1946189 - 财政年份:2019
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
- 批准号:
1751610 - 财政年份:2018
- 资助金额:
$ 50.83万 - 项目类别:
Standard Grant
CAREER: Tailoring the Nanostructure and Morphology of Hydrogen-Bonded Supramolecular Liquid Crystals Using Immiscible Polymer Side Chains
职业:使用不混溶聚合物侧链定制氢键超分子液晶的纳米结构和形态
- 批准号:
0348724 - 财政年份:2004
- 资助金额:
$ 50.83万 - 项目类别:
Continuing Grant