CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation

职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解

基本信息

  • 批准号:
    2340085
  • 负责人:
  • 金额:
    $ 55.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2029-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYScientists are on a fascinating mission to create super-tough materials that withstand extreme conditions like blistering heat, immense pressure, and even radiation. One way to achieve this is to use a special ingredient known as "interfaces," which are like secret codes in nanostructured composites that determine their unique properties. Recently, an exciting discovery was made – unveiling a new type of interface known as a "3D interface." It's like adding a new dimension to materials and holds immense potential. However, there's a twist – scientists don't fully understand how these 3D interfaces function, especially when they face radiation. The focus of this research is to use a material called Cu-Nb as a model to decode the secrets of these 3D interfaces. Two primary goals have been set: firstly, to understand the inner workings of these 3D interfaces at the tiniest atomic level, essentially taking a super-close look at them. Secondly, to explore how these 3D interfaces respond when exposed to radiation. This research will recruit high school students. The aim is to inspire the next generation's interest in science and engineering by offering research opportunities, workshops, and hands-on lab experiences, and to help prepare them for careers in the energy industry. Because these new materials have the potential to revolutionize the way we build things, particularly in the realm of nuclear energy, they could make nuclear reactors safer at lower cost. But the impact goes far beyond that – it can influence various areas, such as improving electronic devices like computer transistors. So, this mission is about understanding science and nurturing students' curiosity, preparing them for exciting careers, and ultimately collaborating with energy companies to create a better, more sustainable world. TECHNICAL SUMMARYThe PI’s research fundamentally focuses on developing advanced materials with exceptional resilience to extreme environmental conditions, encompassing high temperatures, mechanical stress, and radiation exposure. The materials in question are distinguished by their intricate microstructures, particularly the interfaces existing within them, which play a defining role in dictating their properties. A novel dimension in material science was unveiled with the discovery of 3D interfaces, a relatively new and intricate class of interfacial structures. These 3D interfaces exhibit a unique character, characterized by variations in chemical and structural attributes spanning a few atomic layers to tens of nanometers along the interface's normal direction. However, the underlying mechanisms governing the behavior of 3D interfaces, particularly in response to radiation, have remained a subject of limited understanding. This research focuses on a model material system, Cu-Nb, chosen for its suitability in exploring the intricacies of 3D interfaces. The primary research objectives encompass quantifying the varying short-range structural and chemical ordering within 3D interface structures and predicting and validating the stability and transition kinetics of these 3D interfaces when exposed to radiation. This entails a multi-faceted approach involving integrated experiments and computational modeling, with cross-validation playing a pivotal role. The significance of this work extends far beyond the confines of material science and into various practical domains. It has the potential to help identify structural materials that can endure the extreme irradiation conditions found in advanced nuclear reactors, which is an ongoing and critical challenge in the realm of nuclear energy. Furthermore, the insights derived from this research could hold relevance for interface-dominant behavior in diverse contexts, including the behavior of ultra-thin doping layers in advanced electronic components, such as FinFET transistors. Beyond its technical merits, this research strongly emphasizes outreach and education. It seeks to inspire and support both university students and local high school students, especially those from underrepresented groups, in their pursuit of careers in the energy industry. This educational component encompasses research opportunities, workshops, and hands-on laboratory experiences, aligning with the overarching goal of preparing the next generation of materials scientists and engineers for a range of applications across the energy sector and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要主义者正在执行一个令人着迷的任务,以创建超高级材料,以承受极端条件,例如热量,巨大的压力甚至辐射。实现此目的的一种方法是使用一种称为“界面”的特殊成分,就像纳米结构的组成中的秘密代码一样,确定其独特的特性。最近,进行了一个令人兴奋的发现 - 揭示了一种新型的接口,称为“ 3D接口”。这就像在材料上增加了一个新的维度并具有巨大的潜力。但是,有一个扭曲 - 科学家并不完全了解这些3D接口的功能,尤其是当它们面对辐射时。这项研究的重点是使用一种称为CU-NB的材料作为模型来解码这些3D接口的秘密。设定了两个主要目标:首先,在最小的原子级别上了解这些3D接口的内部工作原理,从本质上讲,超级近距离观察它们。其次,探索这些3D接口在暴露于辐射时的响应方式。这项研究将招募高中生。目的是通过提供研究机会,研讨会和动手实验室经验来激发下一代对科学和工程的兴趣,并帮助他们为能源行业的职业做好准备。由于这些新材料有可能彻底改变我们建造物品的方式,尤其是在核能领域,因此它们可以使核反应堆以较低的成本安全。但是影响远远超出了这一点 - 它可能影响各个领域,例如改善计算机晶体管等电子设备。因此,该任务是关于了解科学和培养学生的好奇心,为他们的好奇心做好准备,并最终与能源公司合作,以创造一个更好,更可持续的世界。技术总结PI的研究从根本上着重于开发具有极端环境条件的高级材料,包括高温,机械压力和辐射暴露。所讨论的材料以其复杂的微观结构(尤其是其中存在的界面,它们在决定其特性中起着决定性作用)的区别。通过发现3D界面,这是一种相对新且复杂的界面结构,揭开了材料科学的新颖维度。这些3D界面具有独特的特征,其特征是化学和结构属性的变化,沿界面的正常方向沿着几个原子层到数十纳米。但是,管理3D接口行为的基本机制,尤其是在辐射方面,仍然是有限理解的主题。这项研究的重点是模型材料系统Cu-NB,该系统是为了探索3D接口的复杂性而选择的。主要的研究目标包括在3D界面结构内量化不同的短距离结构和化学排序,并在暴露于辐射时预测和验证这些3D接口的稳定性和过渡动力学。这需要一种多方面的方法,涉及集成实验和计算建模,交叉验证起着关键作用。这项工作的重要性远远超出了材料科学的范围,并进入了各种实际领域。它有可能帮助识别可以忍受高级核反应堆中极端辐照条件的结构材料,这在核能领域是持续且关键的挑战。此外,从这项研究中得出的见解可以与潜水员环境中的界面优势行为保持相关性,包括高级电子组件中超薄掺杂层的行为,例如芬费德晶体管。除了其技术优点之外,这项研究强调了外展和教育。它旨在激发和支持大学生和当地的高中生,尤其是来自代表性不足的团体的学生,以追求能源行业的职业。这种教育组成部分涵盖了研究机会,讲习班和动手实验室经验,与总体目标保持一致,即准备下一代材料科学家和工程师在能源领域及其他地区进行一系列应用。该奖项反映了NSF的法规任务,并认为通过基金会的知识优点和广泛的评估,它被认为是通过评估来进行评估,并将其视为PRICETIAL SPRIDIA和BRADITIA CRITERIA CRITERIA CRITERIA CRITERIA CRITERIA CRITERIA CRITERIA CRITERIA CRITERIA CRITERIA CRITERIA CRITERIA。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Youxing Chen其他文献

Investigation on terminal velocity and drag coefficient of particles with different shapes
不同形状颗粒的终端速度和阻力系数研究
  • DOI:
    10.1088/1742-6596/822/1/012047
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bin Xu;N. Huang;Wei He;Youxing Chen
  • 通讯作者:
    Youxing Chen
A plastic damage model for finite element analysis of cracking of silicon under indentation
压痕下硅裂纹有限元分析的塑性损伤模型
  • DOI:
    10.1557/jmr.2010.0270
  • 发表时间:
    2010-11
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Haibo Wan;Yao Shen;Qiulong Chen;Youxing Chen
  • 通讯作者:
    Youxing Chen
Plastic flow of Fe-binary alloys—I. A description at low temperatures
Fe-二元合金的塑性流动——I.低温下的描述
  • DOI:
    10.1016/0001-6160(81)90068-7
  • 发表时间:
    1981
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Youxing Chen;D. Atteridge;W. Gerberich
  • 通讯作者:
    W. Gerberich
Application and Performance Optimization of MapReduce Model in Image Segmentation
MapReduce模型在图像分割中的应用及性能优化
  • DOI:
    10.1109/access.2019.2963343
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Maozhen Li;Lu Meng;Jiaying Wang;Yong Jin;Binyu Hu;Youxing Chen
  • 通讯作者:
    Youxing Chen
A DEM study on the criteria for particle movement over a granular bed
  • DOI:
    10.1016/j.powtec.2024.120315
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xin Yin;Ning Huang;Youxing Chen;Jie Zhang
  • 通讯作者:
    Jie Zhang

Youxing Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Youxing Chen', 18)}}的其他基金

Reducing Chemical Wear of Single Crystal Diamond Tools Cutting Alloys
减少单晶金刚石工具切削合金的化学磨损
  • 批准号:
    1728554
  • 财政年份:
    2017
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant

相似国自然基金

二元金属原子团簇协同催化多硫化锂转化机制研究
  • 批准号:
    22379001
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
双位点金属氧化物催化剂原子级界面调控及锌-空气电池性能研究
  • 批准号:
    22305010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
原子层沉积制备分子筛限域过渡金属催化甲醇水蒸气重整制氢
  • 批准号:
    22302098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混合卤化物钙钛矿相分离原子尺度机制
  • 批准号:
    52303294
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单原子催化剂类酶活性调控的多元化学发光分析体系的构筑
  • 批准号:
    22374143
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
  • 批准号:
    2350199
  • 财政年份:
    2024
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
  • 批准号:
    2238516
  • 财政年份:
    2023
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Continuing Grant
CAREER: Developing a Computational Workflow to Quantify Atomic-level Allosteric Mechanisms
职业:开发计算工作流程来量化原子级变构机制
  • 批准号:
    2238706
  • 财政年份:
    2023
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
Atomic level structural control and characterisation of perovskite quantum dots
钙钛矿量子点的原子级结构控制与表征
  • 批准号:
    22KJ0994
  • 财政年份:
    2023
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Atomic-level Imaging and Molecular Beam Scattering Studies of Interfacial Chemical Dynamics
界面化学动力学的原子级成像和分子束散射研究
  • 批准号:
    2313365
  • 财政年份:
    2023
  • 资助金额:
    $ 55.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了