CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design

职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模

基本信息

  • 批准号:
    2339999
  • 负责人:
  • 金额:
    $ 57.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Many people have experienced the frustration of trying to find their way to a doctor’s office, departure gate, or meeting room in a large, complex, and unfamiliar building. The economic and human toll of these navigational difficulties is often underestimated. Researchers have found tremendous economic losses resulting from poor architectural design, measured in millions of missed appointments and missed flights, delayed deliveries, reduced performance of new and temporary staff members, and time spent providing directions to visitors. The immediate human costs of stressful buildings can also be substantial, particularly for those whose needs are frequently overlooked in design, such as the elderly and the young, and people with cognitive impairments, among others. Spatial anxiety and frustrating inefficiency are very real phenomena with implications for the wellbeing of those who must work in and navigate through buildings whose designs are not user-friendly. To make the built environment easier to navigate, it is now possible to use virtual simulation tools that analyze a building’s layout, check for “problem spots” and confusing design features, and evaluate the human effects of altering specific environmental features. Performing such analytical checks on design documents before the building is constructed can save a great deal of financial expense and human grief in the long run. The goal of this project is to use data from actual human navigational experiences to help improve such computational design-evaluation tools. Better design review will contribute to more comfortable and enjoyable public spaces, and produce economic benefits through improved operational efficiency in facilities such as hospitals and airports.This research proposes a transformative approach to evidence-based design (EBD), a field that has traditionally relied on logistically complex and expensive methods such as post-occupancy studies and participatory design sessions with building users to inform design decisions. The research will leverage the unique capabilities of virtual reality (VR) to create engaging wayfinding evaluation tasks in various facilities, and collect data about how participants navigate through these virtual buildings and react to key environmental features. The researchers will then identify predictable trends in the extensive resulting dataset via machine learning. This approach will allow us to replace the rationalized pathfinding algorithms used in existing crowd-simulation models (which are wildly inaccurate in relation to actual human behavior) with an Evidence-Based Cognitive Agents Model (EBCAM) to produce more realistic simulated human responses to architectural features. As a final step, the researchers will validate the EBCAM simulation by comparing, and, if necessary, fine-tuning, its predictions against data collected from human participants in two real-world buildings. This project also extends human–building interaction analysis beyond wayfinding performance outcomes, by considering broader factors in spatial experience such as uncertainty, emotional response, and spatial memory. The extent of continuous data collection that will be performed regarding psychological factors during wayfinding, unprecedented in previous studies, will allow for testing new theoretical frameworks in the spatial navigation field, as well as enhancing the evidence-based simulation tool. The application of these empirical findings in the form of a simulation tool vastly increases their accessibility in design workflows, potentially making it possible for a much broader range of facilities to receive the benefits of evidence-based review. The general public can benefit from such expansion in evidence-based design analysis, which until now has mostly been limited to wealthy, urban contexts. The research will further enhance the inclusiveness of design by incorporating overlooked groups such as older adults, developing a model that reflects their specific needs. The tool will empower designers to work more confidently and creatively, knowing that evidence-based evaluations can help to confirm or refute the value of an innovative idea.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多人感到沮丧,试图在一座大型,复杂而陌生的建筑物中找到去医生办公室,出发门或会议室的方式。这些导航困难的经济和人类损失常常被低估。研究人员发现,由于建筑设计差而造成的巨大经济损失,以数百万的未约会和错过的航班,延迟交付,新的和临时工作人员的绩效降低以及为游客提供指示的时间。压力大的建筑物的直接人力成本也可能是巨大的,特别是对于那些在设计中经常被忽视的人,例如老年人和年轻人,以及认知障碍的人等。空间动画和令人沮丧的效率低下是非常真实的现象,对那些必须在设计不友好的建筑物中工作并导航的人的福祉影响。使建筑环境更容易导航,现在可以使用虚拟仿真工具来分析建筑物的布局,检查“问题点”并造成混淆设计功能,并评估更改特定环境特征的人类效果。从长远来看,在建造建筑物之前对设计文档进行此类分析检查可以节省大量的财务费用和人类贪婪。该项目的目的是使用实际人类导航经验中的数据来帮助改善此类计算设计评估工具。 Better design review will contribute to more comfortable and enjoyable public spaces, and produce economic benefits through improved operational efficiency in facilities such as hospitals and airports.This research proposals a transformative approach to evidence-based design (EBD), a field that has traditionally relied on logically complex and expensive methods such as post-occupancy studies and participation design sessions with building users to inform design decisions.该研究将利用虚拟现实(VR)的独特功能来创建引人入胜的寻路评估任务,并收集有关参与者如何浏览这些虚拟建筑并对关键环境特征做出反应的数据。然后,研究人员将通过机器学习确定广泛的结果数据集中的可预测趋势。这种方法将使我们能够用基于证据的认知剂模型(EBCAM)代替现有人群模拟模型中使用的合理的探路算法(与实际人类行为相关),以产生对建筑特征的更现实的人类响应。作为最后一步,研究人员将通过比较EBCAM模拟,并在必要时进行微调,以对两座现实世界中的人参与者收集的数据进行微调。该项目还通过考虑不确定性,情感响应和空间记忆等空间经验中的更广泛的因素,将人与建筑的交互分析扩展到寻路的结果之外。在以前的研究中前所未有的有关寻路过程中将执行有关心理因素的连续数据收集的程度,将允许在空间导航领域测试新的理论框架,并增强基于证据的仿真工具。这些经验发现以模拟工具的形式应用大大提高了其在设计工作流程中的可访问性,有可能使更广泛的设施能够获得基于证据的审查的好处。公众可以从基于证据的设计分析中的这种扩展中受益,到目前为止,这些分析主要仅限于富裕的城市环境。这项研究将通过结合被忽视的群体(例如老年人)来进一步增强设计的包容性,并开发出反映其特定需求的模型。该工具将使设计师能够更加自信,创造性地工作,因为他们知道基于证据的评估可以帮助确认或反驳创新思想的价值。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子的智力优点和更广泛影响的评估标准来通过评估来获得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saleh Kalantari其他文献

Real-time Continuous Uncertainty Annotation (RCUA) for Spatial Navigation Studies
用于空间导航研究的实时连续不确定性注释(RCUA)
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Yang;Saleh Kalantari
  • 通讯作者:
    Saleh Kalantari
Evaluating the impact of spatial openness on stress recovery: A virtual reality experiment study with psychological and physiological measurements
  • DOI:
    10.1016/j.buildenv.2024.112434
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xinting Gao;Yang Geng;John D. Spengler;Junxiao Long;Ningrui Liu;Zhaoyang Luo;Saleh Kalantari;Weimin Zhuang
  • 通讯作者:
    Weimin Zhuang
Comparing spatial navigation in a virtual environment vs. an identical real environment across the adult lifespan
比较成人一生中虚拟环境中的空间导航与相同的真实环境中的空间导航
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Saleh Kalantari;Armin Mostafavi;Tong Bill Xu;Anne Seoyoung Lee;Qi Yang
  • 通讯作者:
    Qi Yang
Advancing Patient-Centered Shared Decision-Making with AI Systems for Older Adult Cancer Patients
利用人工智能系统为老年癌症患者推进以患者为中心的共享决策

Saleh Kalantari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saleh Kalantari', 18)}}的其他基金

CHS: Small: Evaluating and Optimizing Wayfinding in Healthcare Settings through Biometric Data and Virtual Response Testing
CHS:小型:通过生物识别数据和虚拟响应测试评估和优化医疗保健环境中的寻路
  • 批准号:
    2008501
  • 财政年份:
    2020
  • 资助金额:
    $ 57.41万
  • 项目类别:
    Standard Grant

相似国自然基金

iRGD偶联纳米载体双靶向ITGA5/NRP-1抑制HCC侵袭及细胞空间互作机制的研究
  • 批准号:
    82360569
  • 批准年份:
    2023
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目
90Y联合Flt3L作为原位疫苗联合ICIs治疗HBV相关HCC机制研究
  • 批准号:
    82372067
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
tRNAMet通过调控富含AUG密码子基因的蛋白翻译促进HCC发展的机制研究
  • 批准号:
    82373963
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
ACSM3通过增加线粒体代谢通路抵抗NAFLD-HCC进展的机制研究
  • 批准号:
    82303234
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向肿瘤anti-miRNAs上调JAK1/STAT1通路提高HCC对联合免疫治疗敏感的机制研究
  • 批准号:
    82373257
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

HCC: Medium: Optimizing Interactive Machine Learning Tools to Support Plant Scientists using Human Centered Design
HCC:中:优化交互式机器学习工具以支持植物科学家使用以人为本的设计
  • 批准号:
    2312643
  • 财政年份:
    2023
  • 资助金额:
    $ 57.41万
  • 项目类别:
    Standard Grant
HCC: Small: 3DStylus: User-Guided Shape Manipulation using Neural Priors
HCC:小型:3DStylus:使用神经先验进行用户引导的形状操作
  • 批准号:
    2304481
  • 财政年份:
    2023
  • 资助金额:
    $ 57.41万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
  • 批准号:
    2318657
  • 财政年份:
    2023
  • 资助金额:
    $ 57.41万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
  • 批准号:
    2318658
  • 财政年份:
    2023
  • 资助金额:
    $ 57.41万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
  • 批准号:
    2318656
  • 财政年份:
    2023
  • 资助金额:
    $ 57.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了