CAREER: Insertion-Based Natural Language Generation

职业:基于插入的自然语言生成

基本信息

  • 批准号:
    2339766
  • 负责人:
  • 金额:
    $ 58.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2029-04-30
  • 项目状态:
    未结题

项目摘要

AbstractLanguage models (LMs) have become the foundations of most natural language processing (NLP) applications nowadays. However, existing language models predominantly follow the auto-regressive paradigm, which trains models to predict the next word given the left-side context. Then, they generate sentences word-by-word, left-to-right. The simplicity of this paradigm is attractive but it has several limitations, including inefficiency in generation, lack of reliable control for human-machine collaboration, and more importantly, it significantly deviates from how humans interpret and compose sentences. The proposed research explores a fundamentally distinct paradigm of language modeling --- insertion-based models. Such models formulate the generation process as iteratively inserting words into an incomplete context, offering significantly more flexibility and controllability compared to the auto-regressive models. The insertion-based formulation better mimics human writing behaviors and thus provides a tool for computational linguistics and cognitive science to study the structure of languages. The controllability of the model will benefit communication researchers, content creators, and creative composers for applications such as creative content generation, tailored communication, and personalized user experiences. The research results will be integrated in teaching materials to disseminate generative artificial intelligence (AI) for K-12 and undergraduate. This project aims to advance our understandings of the benefits and capability of insertion-based LMs. The proposed research will explore different generation orders supported by the flexibility of the insertion-based formulation, with the goal to discover optimal insertion orders guided by linguistic theories. Additionally, the project will introduce a novel model architecture for a variation of insertion-based LMs that incorporates deletion operations, enabling the models to rectify previous generation errors. This enhancement brings added flexibility and controllability to insertion-based LMs. Furthermore, an ambitious goal of this research is to investigate the scaling law and scale up the pretraining of insertion-based LMs. The success of these explorations has the potential to lead to a family of large language models that exhibit enhanced flexibility, controllability, and inference efficiency surpassing the auto-regressive LMs, resulting in benefits for a wide range of natural language generation and general NLP tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今,抽象语言模型(LMS)已成为大多数自然语言处理(NLP)应用程序的基础。但是,现有的语言模型主要遵循自动回归范式,该范式训练模型以预测给定左侧上下文的下一个单词。然后,他们从左到右生成句子。这种范式的简单性很有吸引力,但它有几个局限性,包括发电的效率低下,缺乏可靠的人机协作控制,更重要的是,它与人类的解释和撰写句子有很大的偏离。拟议的研究探讨了语言建模的根本不同的范式 - 基于插入的模型。这样的模型将迭代的单词插入不完整的上下文中,与自动回归模型相比,具有更大的灵活性和可控性。基于插入的公式可以更好地模仿人类写作行为,因此为计算语言学和认知科学提供了一种研究语言结构的工具。该模型的可控性将使沟通研究人员,内容创建者和创意作曲家受益,例如创意内容,量身定制的沟通和个性化的用户体验。研究结果将集成到教材中,以分发K-12和本科生的生成人工智能(AI)。该项目旨在提高我们对基于插入LMS的好处和能力的理解。拟议的研究将探索以基于插入的配方灵活性支持的不同产生订单,其目标是发现以语言理论为指导的最佳插入顺序。此外,该项目将引入一种新型的模型体系结构,以用于插入的LMS的变化,该插入的LMS结合了删除操作,从而使模型能够纠正上一代错误。这种增强为基于插入的LMS增添了灵活性和可控性。此外,这项研究的一个雄心勃勃的目标是研究规模定律并扩大基于插入的LMS的预处理。 The success of these explorations has the potential to lead to a family of large language models that exhibit enhanced flexibility, controllability, and inference efficiency surpassing the auto-regressive LMs, resulting in benefits for a wide range of natural language generation and general NLP tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nanyun Peng其他文献

Controllable Text Generation for Open-Domain Creativity and Fairness
可控文本生成以实现开放域创造力和公平性
  • DOI:
    10.24963/ijcai.2022/818
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nanyun Peng
  • 通讯作者:
    Nanyun Peng
Adaptable Logical Control for Large Language Models
大型语言模型的自适应逻辑控制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Honghua Zhang;Po;Masahiro Yoshida;Guy Van den Broeck;Nanyun Peng
  • 通讯作者:
    Nanyun Peng
A MBI P UN : Generating Puns with Ambiguous Context
MBI 双关语:产生语境模糊的双关语
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anirudh Mittal;Yufei Tian;Nanyun Peng
  • 通讯作者:
    Nanyun Peng
Creative Natural Language Generation
创造性的自然语言生成
Learning Action Conditions from Instructional Manuals for Instruction Understanding
从教学手册中学习动作条件以理解教学
  • DOI:
    10.48550/arxiv.2205.12420
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Te;Caiqi Zhang;Qingyuan Hu;Alexander Spangher;Nanyun Peng
  • 通讯作者:
    Nanyun Peng

Nanyun Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于二氧化硫插入的烯烃砜基官能团化反应研究
  • 批准号:
    22301192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于石墨间层质心插入理论的插层化学基本反应机制研究
  • 批准号:
    22379110
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于casposase整合酶的新型基因定点插入工具开发研究
  • 批准号:
    32300516
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于铜卡宾迁移插入-自由基交叉偶联接力策略的含氟基团取代手性季碳中心构建反应研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于三代纳米孔测序技术的早期肺腺癌Alu转座元件插入变异分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Comprehensive and non-invasive prenatal screening of coding variation
全面、无创的编码变异产前筛查
  • 批准号:
    10678005
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
Prognostic implications of mitochondrial inheritance in myelodysplastic syndromes after stem-cell transplantation
干细胞移植后骨髓增生异常综合征线粒体遗传的预后意义
  • 批准号:
    10662946
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
Mapping Somatic TE-derived Transcriptional Diversity
绘制体细胞 TE 衍生的转录多样性
  • 批准号:
    10155548
  • 财政年份:
    2020
  • 资助金额:
    $ 58.55万
  • 项目类别:
Mapping Somatic TE-derived Transcriptional Diversity
绘制体细胞 TE 衍生的转录多样性
  • 批准号:
    10386858
  • 财政年份:
    2020
  • 资助金额:
    $ 58.55万
  • 项目类别:
Smartphone-based mobile detection platform for lung cancer detection in China
基于智能手机的中国肺癌移动检测平台
  • 批准号:
    10018939
  • 财政年份:
    2019
  • 资助金额:
    $ 58.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了