CAREER: Mechano-Metabolic Control of Electrical Remodeling of Human Induced Pluripotent Stem Cell Derived Engineered Heart Muscle

职业:人类诱导多能干细胞衍生的工程心肌电重塑的机械代谢控制

基本信息

  • 批准号:
    2338931
  • 负责人:
  • 金额:
    $ 69.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2029-04-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) award supports research to understand how to grow heart muscle from stem cells in the laboratory and use that muscle to predict how drugs will affect patients’ hearts. Induced pluripotent stem cells (iPSC) are cells from healthy adult patients that are “rewired” so that they can form any type of cell found in the body. Currently, heart muscle grown from iPSC in the laboratory is more similar to heart muscle in a fetus than an adult. This means that lab grown muscle does not accurately predict the way drugs will affect patients. This is a major obstacle to developing drugs to treat heart disease, the leading cause of death in the United States. Shortly after birth, babies’ hearts must pump with stronger force because their blood pressure increases. At the same time, their hearts’ energy source shifts from sugar to fat. Previous research suggests that individually mimicking these changes in mechanical resistance to pumping, or changing the energy source from sugar to fat, can enhance lab-grown heart muscle. This research project will support combining those changes, with the goal of producing muscle that more accurately predicts the way drugs will affect patients. In addition, planned collaborations between the scientists performing this work and local high school teachers will expose students who are underrepresented in the STEM pipeline to science and engineering. In the perinatal and postnatal stages of heart development, mechanical forces on the heart (preload and afterload) increase. Concurrently, ATP-sourcing switches from glucose to fatty acids. This research hypothesizes that mechanical loading and ATP-sourcing act in a synergistic manner to elicit electrical maturation of cardiomyocytes derived from iPSC by regulating Peroxisome Proliferator Activated Receptor (PPAR) signaling. To address this hypothesis, the PI will leverage a high-throughput, iPSC-derived micro-heart muscle array technology. Biophysical cues applied to the micro-tissues will be controlled using linear actuators to stretch tissue (preload) and magneto-rheoelastomeric substrates to control the rigidity of the substrate tissues work against (afterload). Overall changes in micro-tissue electrophysiology will be determined using voltage sensitive dye, genetic calcium indicator (GCaMP6f), high-speed microscopy and automated video analyses. Using a combination of ion channel specific blocking drugs, immunostaining and RNAseq, these overall changes in electrophysiology will be linked to changes in expression of specific ion channels. Finally, a series of studies with PPAR-pathway modifying drugs will be performed to specifically probe the role for the PPAR-pathway in electrical maturation of iPSC-cardiomyocytes. The overarching focus of the research is to obtain deep understanding of how mechanical cues synergize with soluble, chemical cues like the metabolic substrate, to affect cellular fate and function. This project will allow the PI to advance the knowledge base in mechanobiology and establish his long-term bioengineering career.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展(职业)奖支持研究,以了解如何从实验室中的干细胞增强心肌,并利用该肌肉来预测药物将如何影响患者的心脏。诱导的多能干细胞(IPSC)是来自健康的成年患者的细胞,这些细胞“重新连接”,因此它们可以形成体内发现的任何类型的细胞。目前,实验室中IPSC生长的心肌与胎儿的心肌更相似,而不是成人。这意味着实验室种植的肌肉无法准确预测药物影响患者的方式。这是开发药物治疗心脏病的主要障碍,心脏病是美国的主要死亡原因。出生后不久,婴儿的心脏必须以更强的力量抽水,因为他们的血压会增加。同时,他们心脏的能量源从糖转移到脂肪。先前的研究表明,单独模仿对泵送的机械耐药性或将能源从糖变为脂肪的变化可以增强实验室成长的心肌。该研究项目将支持将这些变化结合起来,其目的是产生肌肉,以更准确地预测药物影响患者的方式。此外,从事这项工作的科学家与当地高中教师之间的计划合作将使STEM管道中人数不足的学生暴露于科学和工程学。在心脏发育的围产期和产后阶段,心脏上的机械力(预紧力和后负荷)增加。同时,ATP源从葡萄糖转换为脂肪酸。这项研究假设机械载荷和ATP源代码以协同的方式行为,以通过调节过氧化物体增殖物激活受体(PPAR)信号传导从IPSC衍生而来的心肌细胞的电气成熟。为了解决这一假设,PI将利用高通量的IPSC衍生的微心肌肉阵列技术。应用于微问题的生物物理提示将使用线性执行器控制伸展组织(预紧力)和磁性 - rheoelastomeric底物,以控制基板正时的刚度(后负载)。微组织电生理学的总体变化将使用电压敏感染料,遗传钙指标(GCAMP6F),高速显微镜和自动视频分析确定。使用离子通道特异性阻断药物,免疫染色和RNASEQ的组合,电生理学的总体变化将与特定离子通道表达的变化有关。最后,将对PPAR-PATHWAY修饰药物进行一系列研究,以专门探究PPAR-Pathway在IPSC核心成熟中的作用。该研究的总体重点是深入了解机械线索如何与固体,化学线索(如代谢底物)协同作用,以影响细胞命运和功能。该项目将使PI能够提高机制知识基础,并建立他的长期生物工程职业。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Huebsch其他文献

Mechanical Resistance to Micro-Heart Tissue Contractility unveils early Structural and Functional Pathology in iPSC Models of Hypertrophic Cardiomyopathy
对微心脏组织收缩性的机械阻力揭示了肥厚性心肌病 iPSC 模型的早期结构和功能病理学
  • DOI:
    10.1101/2023.10.30.564856
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingxuan Guo;Huanzhu Jiang;David R Schuftan;Jonathan D. Moreno;G. Ramahdita;Lavanya Aryan;D. Bhagavan;Jonathan Silva;Nathaniel Huebsch
  • 通讯作者:
    Nathaniel Huebsch
Recovery from hind limb ischemia enhances rhBMP-2-mediated segmental bone defect repair in a rat composite injury model.
在大鼠复合损伤模型中,后肢缺血恢复增强了 rhBMP-2 介导的节段性骨缺损修复。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Brent A. Uhrig;J. Boerckel;N. Willett;M. Li;Nathaniel Huebsch;R. Guldberg
  • 通讯作者:
    R. Guldberg
Characterization of a composite injury model of severe lower limb bone and nerve trauma
严重下肢骨神经损伤复合损伤模型的表征
ALTERED PHASE SEPARATION OF CRYAB PROTEIN, A CARDIAC-ENRICHED CHAPERONE, PROVOKES PROTEOTOXICITY IN ISCHEMIC CARDIOMYOPATHY
  • DOI:
    10.1016/s0735-1097(23)00862-8
  • 发表时间:
    2023-03-07
  • 期刊:
  • 影响因子:
  • 作者:
    Md Moydul Islam;Walter Navid;Carla Weinheimer;Jessica Nigro;David Rawnsley;Babak Razani;Simon Sedej;Ali Javaheri;Nathaniel Huebsch;Douglas Covey;Kartik Mani;Abhinav Diwan
  • 通讯作者:
    Abhinav Diwan
Integrated electrophysiologic analyses of amiodarone in human iPSC-derived cardiomyocytes
  • DOI:
    10.1016/j.bpj.2021.11.1572
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Druv Bhagavan;Jonathan D. Moreno;Divya C. Kernik;Jingxuan Guo;Nathaniel Huebsch;Jonathan R. Silva
  • 通讯作者:
    Jonathan R. Silva

Nathaniel Huebsch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

探索间质机械力通过影响SMAD4/JNK/PIN1功能轴对胰腺癌糖代谢重编程的调控机制
  • 批准号:
    82372906
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
糖代谢参与的机械力微环境通过COLI/DDR1对子宫内膜癌转移细胞伪足表面刚度影响的分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
机械应力对脑胶质瘤相关巨噬细胞代谢功能重塑的作用及机制研究
  • 批准号:
    32100726
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
糖代谢参与的机械力微环境通过COLI/DDR1对子宫内膜癌转移细胞伪足表面刚度影响的分子机制研究
  • 批准号:
    82103419
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
机械应力对脑胶质瘤相关巨噬细胞代谢功能重塑的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    $ 69.57万
  • 项目类别:
    Discovery Projects
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
  • 批准号:
    EP/Y036948/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.57万
  • 项目类别:
    Research Grant
Probing the mechano-biology of cell-cell adhesion in a novel single cell assay
在新型单细胞测定中探讨细胞间粘附的力学生物学
  • 批准号:
    EP/Y002245/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.57万
  • 项目类别:
    Research Grant
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
  • 批准号:
    EP/Y036565/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.57万
  • 项目类别:
    Research Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    $ 69.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了