CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems

职业:集成铌酸锂飞秒锁模激光器和超快光子系统

基本信息

项目摘要

The key to unlocking the secrets of the fastest timescales in nature lies with femtosecond mode-locked lasers (MLLs) - powerful devices that emit ultrashort, coherent optical pulses at an astonishing quadrillionth of a second. Realizing femtosecond MLLs and ultrafast photonic systems on chip-scale, integrated photonic circuits can unlock a multitude of applications previously beyond the reach of conventional tabletop setups. These applications, such as portable atomic clocks and advanced biological imaging tools, have the potential to bring transformative impacts across biomedical science, national defense, and information processing. However, existing chip-scale integrated MLLs lack the peak intensities and degrees of controllability, which impede the realization of integrated ultrafast photonic systems. This project addresses these challenges by leveraging novel laser gain media and the emerging thin-film lithium niobate integrated photonic material platform, with the goal of realizing high-power, reconfigurable femtosecond MLL and novel integrated ultrafast photonic systems. In addition, the PI and his team will establish several new outreach activities and training programs that prepare students of diverse backgrounds for the nation’s semiconductor and optoelectronic workforce. These include (1) new modules and remotely accessible teaching labs on semiconductor devices and integrated photonics; (2) a workshop series empowering science teachers at disadvantaged local high schools with cutting-edge advances in semiconductor and photonics and collaborating on effective teaching strategies for physics; (3) “Science Night” events to promote scientific exploration among high school students and nurture their interest and (4) Summer Internship at the PI’s lab at CUNY’s Advanced Science Research Center, which exposes high school students from underrepresented groups to state-of-the-art facilities and cutting-edge research projects in semiconductor and integrated photonics.Technical description:In this CAREER program, the principle investigator and his team aims to (1) develop chip-scale, fully-integrated mode-locked lasers (MLL) on thin-film lithium niobate (TFLN) that can generate femtosecond pulses at microwave repetition rate with a high on-chip peak power exceeding 10 watts, and to (2) realize fully integrated ultrafast photonic systems such as integrated supercontinuum lasers and self-referenced frequency combs by seamlessly integrating high-peak power MLL with other TFLN-based nonlinear photonic devices. At the core of these innovations lies the investigation and utilization of a novel laser gain medium, and an unexplored regime of light-matter interaction in integrated photonics. Within this new regime, the on-chip laser gain interplays with the energy-efficient, and instantaneous quadratic optical nonlinearity of TFLN nanophotonics, promising efficient, stable, and reconfigurable femtosecond light pulse formation. The successful development of high peak power integrated MLLs and their seamless integration with other TFLN-based nonlinear photonic devices can enable a suite of system-level functionalities that have not yet been realized in integrated photonics, which will play major roles in next-generation optical imaging, metrology, and photonic information processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然界中最快的时间尺度的秘密的关键在于飞秒模式锁定激光器(MLLS) - 强大的设备,它们在一秒钟的惊人四亿分之一中散发出超短的光学脉冲。实现飞秒MLL和芯片尺度上的超快光子系统,集成的光子电路可以解锁以前超出传统桌面设置的多种应用。这些应用,例如便携式原子钟和先进的生物成像工具,有可能在生物医学科学,国防和信息处理中带来变革性的影响。但是,现有的芯片尺度集成的MLL缺乏可控性的峰值强度和程度,这阻碍了综合超快光子系统的实现。该项目通过利用新颖的激光增益媒体和新兴的薄膜锂Niobate Integrated Photonic材料平台来解决这些挑战,其目的是实现高功率,可重新配置的飞秒MLL和新型的Integrated Ulteraf stultrated Ultrafast Photonic Systems。此外,PI和他的团队还将建立几项新的外展活动和培训计划,为美国半导体和光电劳动力的潜水员背景的学生做好准备。其中包括(1)在半导体设备和集成光子学上的新模块和远程访问的教学实验室; (2)一个研讨会系列,赋予不利的当地高中科学教师,并在半导体和光子学方面取得了尖端的进步,并合作就物理学的有效教学策略进行了合作; (3) “Science Night” events to promote scientific exploration among high school students and nurse their interest and (4) Summer Internship at the PI’s lab at CUNY’s Advanced Science Research Center, which exposes high school students from underrepresented groups to state-of-the-art facilities and cutting-edge research projects in semiconductor and integrated photonics.Technical description:In this CAREER program, the principle investigator and his team aims to (1) develop薄膜锂锂(TFLN)上的芯片尺度,完全集成的模式锁定激光器(MLL),可以以微波重复速率生成飞秒脉冲,其芯片峰值较高,超过10瓦的芯片峰值,并通过(2)通过(2)实现(2)通过(2)实现全面的超级超级超级元素,并自在高峰值功率MLL与其他基于TFLN的非线性光子设备。这些创新的核心在于新型激光增益培养基的投资和利用,以及集成光子学中光结合相互作用的意外状态。在这个新的制度中,片上激光与TFLN纳米素化学的节能和瞬时二次光学非线性相互作用,有效的,稳定和可重构的飞秒端光脉冲形成。高峰值集成MLL的成功开发及其与其他基于TFLN的非线性光子设备的无缝集成可以使一套系统级功能尚未实现,这些功能尚未实现,这些功能在集成光子学中尚未实现,该功能将在下一代光学成像,Metro-Informent Crocessing中扮演重要的Intervient ofertional Internition。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiushi Guo其他文献

Patch-Swap Based Approach for Face Anti-Spoofing Enhancement
基于补丁交换的人脸反欺骗增强方法
  • DOI:
    10.1109/tensymp55890.2023.10223630
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiushi Guo;Shisha Liao;Yifan Chen;Shihua Xiao;Jin Ma;Tengteng Zhang
  • 通讯作者:
    Tengteng Zhang
Enhancing Mobile Privacy and Security: A Face Skin Patch-Based Anti-Spoofing Approach
A PARylation-phosphorylation cascade promotes TOPBP1 loading and RPA-RAD51 exchange in homologous recombination
PARylation-磷酸化级联促进同源重组中的 TOPBP1 加载和 RPA-RAD51 交换
  • DOI:
    10.1016/j.molcel.2022.04.031
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    16
  • 作者:
    Jiao Zhao;Shanshan Tian;Qiushi Guo;Kaiwen Bao;Guohui Yu;Xiaodan Wang;Xilin Shen;Jieyou Zhang;Jiaxin Chen;Ying Yang;Ling Liu;Xiangchun Li;Jihui Hao;Na Yang;Zhe Liu;Ding Ai;Jie Yang;Yi Zhu;Zhi Yao;Shuai Ma;Kai Zhang;Lei Shi
  • 通讯作者:
    Lei Shi
Nanoantenna Integrated Thermomechanical Infrared Detector
纳米天线集成热机械红外探测器
  • DOI:
    10.1007/s11468-016-0463-3
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Ao Yang;Kecheng Yang;Xiaochao Tan;Junyu Li;Song Guo;Lun Zhou;Xin Tian;Huan Liu;Haisheng Song;Jiang Tang;Feng Liu;Alex;er Yutong Zhu;Qiushi Guo;Fei Yi
  • 通讯作者:
    Fei Yi
Interlayer Interactions in Anisotropic Atomically-thin Rhenium Diselenide
各向异性原子薄二硒化铼的层间相互作用
  • DOI:
    10.1007/s12274-015-0865-0
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Huan Zhao;Jiangbin Wu;Hongxia Zhong;Qiushi Guo;Xiaomu Wang;Fengnian Xia;Li Yang;Ping-Heng Tan;Han Wang
  • 通讯作者:
    Han Wang

Qiushi Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向抑郁症睡眠障碍的视听融合神经调控机理研究
  • 批准号:
    12302071
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合主被动遥感的复杂山地森林地上生物量估算研究
  • 批准号:
    42361065
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
厚云覆盖与地物变化场景下的异质遥感影像时空融合方法
  • 批准号:
    42301531
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于氮杂环融合去氧鬼臼毒素类似物的tubulin/PARP1双靶点抑制剂研究
  • 批准号:
    82373769
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Podoplanin调控EGFR信号通路介导NTRK融合基因阳性非小细胞肺癌靶向耐药的机制研究
  • 批准号:
    82373044
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Integrated Model of Recycling and Disposal of Lithium-ion Batteries (IMRAD)
锂离子电池回收与处置一体化模型(IMRAD)
  • 批准号:
    2749747
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
iOP-Connect System for Long-Term Continuous Monitoring of Glaucoma Therapy by means of an Implantable Autonomous Intraocular Pressure Sensor
iOP-Connect 系统通过植入式自主眼压传感器长期连续监测青光眼治疗
  • 批准号:
    10556408
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
iOP-Connect System for Long-Term Continuous Monitoring of Glaucoma Therapy by means of an Implantable Autonomous Intraocular Pressure Sensor
iOP-Connect 系统通过植入式自主眼压传感器长期连续监测青光眼治疗
  • 批准号:
    10383459
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
HYDRANGER - The Physically Integrated Hydrogen Fuel Cell - Lithium Battery Range Extender
HYDRANGER - 物理集成氢燃料电池 - 锂电池增程器
  • 批准号:
    10006261
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
  • 批准号:
    2137723
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了