Coupled Ionic-Electronic-Structural Dynamics in Organic Mixed Conductors

有机混合导体中的耦合离子电子结构动力学

基本信息

  • 批准号:
    2304613
  • 负责人:
  • 金额:
    $ 46.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

With the support of the Macromolecular, Supramolecular and Nanochemistry program in the Division of Chemistry, Connor G. Bischak of the University of Utah is elucidating the relationship between electronic transport, ion motion, and structural dynamics in conjugated polymers that operate as organic mixed ionic-electronic conductors (OMIECs). OMIECs are soft polymeric semiconductors which can conduct both electronic and ionic charges. This unique ability makes them particularly suitable for a variety of applications of relevance to next-generation bioelectronic, optoelectronic and energy storage devices. However, for many of these applications, it is currently difficult to choose a combination of polymer molecular structure, polymer processing conditions, and electrolyte to achieve a specific performance metric. This project will fill these knowledge gaps by exploiting the high spatial resolution and chemical specificity of novel scanning probe imaging approaches, as well as a complementary suite of traditional and novel in situ techniques. Fundamental correlations established as a result of this work have the potential to help guide synthetic chemists towards synthesizing the next generation of OMIEC conjugated polymers. The interdisciplinary nature of this research will provide strong training and professional development opportunities for high school, undergraduate and graduate students. The project will additionally support an outreach effort to supply local high school chemistry classrooms with affordable 3D-printed spectrometers to learn about light-matter interactions, similar to those that are used to interrogate OMIEC polymers.This research will focus on investigating organic mixed ionic-electronic conductors (OMIECs) to uncover relationships between ion motion, electronic transport, and structural dynamics. Poly(thiophene)s with various backbones comprised of hydrocarbons, oligo (ethylene glycol)s, or carbonyl functionalities will be the focal points, in part because they are currently the highest performing OMIEC materials. In the first specific aim, reversible and irreversible structural dynamics will be investigated using blends of semicrystalline and amorphous polymers to tune the crystallinity and measure ion injection kinetics as a function of crystalline to amorphous polymer ratios. The second aim will extend studies to ion dependent effects. Finally, the impacts of heterogeneous polymer structure will be addressed through correlative nanoscale imaging that will be used to answer basic questions about the doping process and structural dynamics. The combined efforts have the potential to afford new insights into chemical design elements that enable more effective conductivity. This research aims to address critical knowledge gaps in the field with the goal of enabling design of optimal ionic and electronic conductivity in such systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系高分子、超分子和纳米化学项目的支持下,犹他大学的 Connor G. Bischak 正在阐明共轭聚合物中电子传输、离子运动和结构动力学之间的关系,这些聚合物作为有机混合离子-电子导体(OMIEC)。 OMIEC 是软聚合物半导体,可以传导电子和离子电荷。 这种独特的能力使它们特别适合与下一代生物电子、光电和能量存储设备相关的各种应用。 然而,对于许多此类应用,目前很难选择聚合物分子结构、聚合物加工条件和电解质的组合来实现特定的性能指标。 该项目将通过利用新型扫描探针成像方法的高空间分辨率和化学特异性以及传统和新型原位技术的补充套件来填补这些知识空白。 这项工作所建立的基本关联有可能帮助指导合成化学家合成下一代 OMIEC 共轭聚合物。 这项研究的跨学科性质将为高中生、本科生和研究生提供强有力的培训和专业发展机会。 该项目还将支持一项外展工作,为当地高中化学教室提供价格实惠的 3D 打印光谱仪,以了解光与物质的相互作用,类似于用于询问 OMIEC 聚合物的光谱仪。这项研究将重点研究有机混合离子-电子导体(OMIEC)来揭示离子运动、电子传输和结构动力学之间的关系。具有由碳氢化合物、低聚乙二醇或羰基官能团组成的各种主链的聚噻吩将成为焦点,部分原因是它们是目前性能最高的 OMIEC 材料。 在第一个具体目标中,将使用半结晶和无定形聚合物的混合物来研究可逆和不可逆结构动力学,以调节结晶度并测量离子注入动力学作为结晶与无定形聚合物比率的函数。 第二个目标是将研究扩展到离子依赖性效应。 最后,异质聚合物结构的影响将通过相关纳米级成像来解决,该成像将用于回答有关掺杂过程和结构动力学的基本问题。 共同努力有可能为化学设计元素提供新的见解,从而实现更有效的导电性。这项研究旨在解决该领域的关键知识差距,目标是在此类系统中实现最佳离子和电子电导率的设计。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Connor Bischak其他文献

Connor Bischak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

半导性聚合物壳层限域的聚离子液颗粒的离子-电子耦合、极化与电流变效应研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于离子-电子耦合转移的离子嵌脱动力学理论与模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
氟离子耦合电子转移策略活化六氟化硫的五氟化硫官能团化反应研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微推力ECRIT多场与电子输运过程的相互耦合及其对性能影响的研究
  • 批准号:
    11875222
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
电子多体效应和非绝热动力学对温稠密物质结构和电子离子碰撞过程的影响
  • 批准号:
    11774429
  • 批准年份:
    2017
  • 资助金额:
    69.0 万元
  • 项目类别:
    面上项目

相似海外基金

Revealing the Influence of Electrolyte Solvents and Ions on Electronic and Ionic Transport in Electrochemically Doped Conjugated Polymers
揭示电解质溶剂和离子对电化学掺杂共轭聚合物中电子和离子传输的影响
  • 批准号:
    2349830
  • 财政年份:
    2024
  • 资助金额:
    $ 46.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
  • 批准号:
    2333166
  • 财政年份:
    2023
  • 资助金额:
    $ 46.07万
  • 项目类别:
    Continuing Grant
CAREER: Block Polyelectrolyte Complexes for Controlled Mixed Ionic-Electronic Conduction
职业:用于受控混合离子电子传导的嵌段聚电解质复合物
  • 批准号:
    2237888
  • 财政年份:
    2023
  • 资助金额:
    $ 46.07万
  • 项目类别:
    Continuing Grant
Surfaces and interfaces of luminescent polymer mixed ionic/electronic conductors
发光聚合物混合离子/电子导体的表面和界面
  • 批准号:
    RGPIN-2020-04026
  • 财政年份:
    2022
  • 资助金额:
    $ 46.07万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding electronic and ionic interfaces in core-shell silicon anodes
了解核壳硅阳极中的电子和离子界面
  • 批准号:
    572985-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 46.07万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了