CAREER: Novel Microplasmas for Highly Compact and Versatile RF Electronics
事业:用于高度紧凑和多功能射频电子器件的新型微等离子体
基本信息
- 批准号:2337815
- 负责人:
- 金额:$ 55.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Due to the increasingly congested and contested spectrum, reconfigurable RF electronics have become a subject of extensive research. Semiconductor devices, microelectromechanical systems (MEMS), liquid crystals, and ferromagnetic materials have conventionally served as tools for RF tuning. However, these technologies are constrained by limited tuning ranges and low power handling capabilities. To overcome these limitations, cold plasma presents a promising solution. Manipulating internal parameters, such as electron density, gas type, and pressure, offers extensive tunability over plasma electromagnetic properties. Cold plasmas have already provided significant advantages across various societally relevant applications, such as plasma medicine, food preservation, water treatment, plasma fertilizer, electric propulsion systems, sterilization, and semiconductor fabrication. This research explores fundamental physics and demonstrates techniques for establishing stable microplasmas with exceptional electromagnetic properties for versatile RF electronics. To realize this vision, (1) theoretical and modeling frameworks for high-frequency microplasmas will be developed, (2) a closed-loop microplasma monitoring and control system will be investigated, and (3) stable microplasmas with unprecedented electromagnetic features will be realized. Undergraduate and graduate students will be involved, a unique educational plasma lab will be established, and a circuit-based electromagnetic-plasma simulator will be developed. In addition, various synergistic outreach activities will be conducted, including Toledo Excel summer camps for underrepresented students. By combining innovative research, educational initiatives, and outreach efforts, this endeavor aspires to advance the landscape of reconfigurable RF electronics, paving the way for emerging multi-objective and multi-frequency systems.Plasmas represent rapidly reconfigurable media that can be controlled on nanosecond timescales. The interaction between microplasmas and electromagnetic waves introduces a new field of significant applications that can be categorized as "Gaseous Microelectronics." This study aims to push the boundaries of plasma science by exploring widely tunable microplasmas capable of unconventional interactions with electromagnetic waves. This exceptional behavior will be achieved through fundamental understanding and precise control of microplasma kinetics. While some efforts have been made in plasma-based RF electronics, this research field has not yet been comprehensively explored, specifically for microplasmas with extreme electromagnetic features—a knowledge gap this project aims to address. To pursue this overarching objective, a novel closed-loop control system, including innovative diagnostic techniques, will be developed to accurately manipulate microplasmas. With all theoretical, numerical, and experimental investigations involved, the goal is to realize (i) high-Q microplasma varactors with extraordinary tunability, (ii) natural epsilon-near-zero (ENZ) microplasmas, and (iii) low-loss negative index materials (NIMs). Rapidly and widely tunable, low-loss, and high-power materials for high-frequency tuning do not currently exist, but this research can change this paradigm. By leveraging these unique materials, more efficient utilization of the electromagnetic spectrum can be achieved, effectively meeting the escalating demand for wireless services. In addition, these features will benefit emerging sensing, biomedical, and space applications, addressing critical needs in these domains and fostering technological innovations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于越来越拥挤且有争议的范围,可重构的RF电子设备已成为广泛研究的主题。半导体设备,微电机电系统(MEM),液晶和铁磁材料通常用作RF调整的工具。但是,这些技术受到有限的调谐范围和低功率处理能力的限制。为了克服这些局限性,冷等离子体提出了一个有希望的解决方案。操纵内部参数,例如电子密度,气体类型和压力,在等离子体电磁特性上提供了广泛的可密鼠性。冷等离子体已经在各种社会相关的应用中提供了显着的优势,例如血浆药物,食物制备,水处理,血浆肥料,电推进系统,灭菌和半导体制造。这项研究探索了基本物理学,并展示了建立具有多种电子特性的稳定微型质量的技术。为了实现这一愿景,(1)将开发用于高频微型质量的理论和建模框架,(2)将研究一个闭环微质量监测和控制系统,(3)将实现具有前所未有的电子特征的稳定微质量。将参与本科生和研究生,将建立一个独特的教育等离子体实验室,并将开发基于电路的电子超语模拟器。此外,还将进行各种协同的外展活动,其中包括托莱多Excel夏令营的代表性不足的学生。通过结合创新的研究,教育计划和外展工作,这项努力渴望推动可重新配置的RF电子产品的景观,为新兴的多键和多频系统铺平了道路。微质量与电磁波之间的相互作用引入了一个新的重要应用领域,可以将其归类为“气态微电子学”。这项研究旨在通过探索能够与电磁波非常规相互作用的广泛可调的微型质量来突破等离子科学的边界。通过基本理解和对微质量动力学的精确控制,将实现这种特殊行为。尽管基于等离子体的RF电子设备已经做出了一些努力,但尚未对该研究领域进行全面探索,特别是针对具有极端电子功能的微质量的 - 知识差距该项目旨在解决。为了追求这一总体目标,将开发一个新型的闭环控制系统,包括创新的诊断技术,以通过所有涉及的所有理论,数值和实验研究进行准确操纵,目的是实现(i)高Q微质量变体具有非凡的可测量,(ii)自然的nepsilon-epsilon-Near-near-enex and-eneex sirsexsmasmas,(II),(II)MIRISTASMas,(II),(II)(II),(II)(II)Microplassmas,(II),( (NIMS)。目前不存在快速,可调,低损坏和高功率调整的材料,但是这项研究可以改变此范式。通过利用这些独特的材料,可以实现对电子光谱的更有效利用,从而有效地满足对无线服务的不断升级。此外,这些功能将使新兴的敏感性,生物医学和空间应用有益于这些领域中的关键需求并促进技术创新。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响标准通过评估来进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Abbas Semnani的其他基金
Ultra-High Efficiency Microwave Plasma for Extreme Low-Power Applications
适用于极低功耗应用的超高效率微波等离子体
- 批准号:21021002102100
- 财政年份:2021
- 资助金额:$ 55.58万$ 55.58万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:32171163
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
- 批准号:EP/Z000246/1EP/Z000246/1
- 财政年份:2025
- 资助金额:$ 55.58万$ 55.58万
- 项目类别:Research GrantResearch Grant
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
- 批准号:1009784610097846
- 财政年份:2024
- 资助金额:$ 55.58万$ 55.58万
- 项目类别:Collaborative R&DCollaborative R&D
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:1009989610099896
- 财政年份:2024
- 资助金额:$ 55.58万$ 55.58万
- 项目类别:Collaborative R&DCollaborative R&D
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
- 批准号:1008059810080598
- 财政年份:2024
- 资助金额:$ 55.58万$ 55.58万
- 项目类别:EU-FundedEU-Funded
Mathematics to underpin and drive novel inertial microfluidic technologies
数学支撑和驱动新型惯性微流体技术
- 批准号:DP240101089DP240101089
- 财政年份:2024
- 资助金额:$ 55.58万$ 55.58万
- 项目类别:Discovery ProjectsDiscovery Projects