CAREER: Chemically specific polymer models with field-theoretic simulations

职业:具有场论模拟的化学特定聚合物模型

基本信息

  • 批准号:
    2337554
  • 负责人:
  • 金额:
    $ 55.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYPolymers are long chain-like molecules that underlie diverse technologies ranging from surfactants and adhesives to biomaterials and batteries. Polymers also play a critical role in emerging technologies such as flexible electronics, organic solar cells and next-generation filtration membranes. In all of these applications, the chemical details of the polymers are critical: small chemical modifications to polymers can result in materials with drastically different properties. Unfortunately, it is exceptionally difficult to predict how changes in polymer chemistry will affect the resulting material properties and so new materials must be laboriously optimized through trial-and-error experimentation. This CAREER award supports the development of a new computational method that will accelerate the design of new polymeric materials using simulation. The basis for this new approach relies on an alternative strategy for simulating polymers that is considerably faster than existing techniques and can enable calculations that are currently intractable with existing methods. This project will extend this new method to include specific information about a polymer's chemistry while remaining efficient enough to predict the large structures inherent to polymeric materials. By accurately predicting the structure of polymers across this wide range of length scales, this new computational tool has the potential to significantly accelerate the design of new polymers for both existing and emerging applications.This CAREER award also supports educational and outreach activities that will train students at multiple education levels in modern computation. These activities will: (1) initiate a new coding club to provide coding experiences for middle-school girls, (2) expose undergraduates to computational research through Drexel's co-op program, and (3) train graduate students in polymeric simulations with online and freely accessible lectures and assignments. This educational platform incorporates key elements from the technical project into age-appropriate activities that will link the discovery process with its dissemination. TECHNICAL SUMMARYOne of the defining features of polymeric materials is a hierarchy of length scales that involves a complex interplay between monomer (1 nm), molecular (10 nm) and mesoscopic (100 nm) features. This hierarchy of length scales makes it challenging to design new polymeric materials because it is difficult to anticipate how chemical changes at the smallest length scales will propagate up to the largest length scales in a material. In this project, a new simulation method will be pursued that can simultaneously resolve both monomer-level chemistry and mesoscopic length scales within a polymeric material. The basis for this strategy is a new "multi-representation" approach where particle-based and field-theoretic simulations are linked together into a unified framework. Preliminary results indicate that this new method can accelerate calculations by several orders of magnitude yet involves no approximation or information loss relative to existing techniques. As such, this new framework has the potential to enable polymer simulations that are currently intractable and could provide new fundamental insights into how mesoscale structures emerge from monomer-level chemistry. This CAREER award supports the development of this new simulation method, the extension of the method to chemically specific interaction potentials and its application to intrinsically disordered polypeptides. More generally, this project also explores the fundamental intersections between particle and field-based simulations and how these methods can be combined together to provide facile access to molecular configurations, mesoscopic structure and free energies. This project will also advance the field-theoretic simulation method and will lead to the development of new tools and numerical methods that will broaden the applicability of this powerful, yet nascent, simulation technique.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要聚合物是长长的链状分子,其基础是多种技术,从表面活性剂和粘合剂到生物材料和电池。聚合物在新兴技术(例如柔性电子,有机太阳能电池和下一代过滤膜)中也起着至关重要的作用。在所有这些应用中,聚合物的化学细节至关重要:对聚合物的小化学修饰可能导致具有截然不同的特性的材料。不幸的是,非常困难地预测聚合物化学的变化将如何影响所得的材料特性,因此必须通过试用试验实验将新材料进行费力地优化新材料。 该职业奖支持了一种新的计算方法的开发,该方法将使用模拟加速新的聚合物材料的设计。这种新方法的基础依赖于模拟聚合物的替代策略,该策略比现有技术快得多,并且可以启用当前与现有方法相互棘手的计算。该项目将扩展这种新方法,以包括有关聚合物化学的特定信息,同时保持足够有效的效率,以预测聚合物材料固有的大型结构。通过准确地预测整个长度范围内聚合物的结构,这种新的计算工具有可能显着加速现有和新兴应用的新聚合物的设计。该职业奖还支持教育和外展活动,这些活动将在现代计算中培训多个教育水平的学生。这些活动将:(1)启动一个新的编码俱乐部,为中学女孩提供编码体验,(2)通过Drexel的合作计划将本科生暴露于计算研究中,以及(3)通过在线和自由访问的讲座和分配的聚合物模拟中培训研究生。这个教育平台将技术项目的关键要素纳入了适合年龄的活动,这些活动将把发现过程与其传播联系起来。 聚合物材料定义特征的技术总结是长度尺度的层次结构,涉及单体(1 nm),分子(10 nm)和中镜(100 nm)特征之间的复杂相互作用。长度尺度的这种层次结构使设计新的聚合物材料具有挑战性,因为很难预测最小长度尺度上的化学变化将如何传播到材料中最大的长度尺度。在该项目中,将采用一种新的模拟方法,可以同时解决聚合物材料中单体级化学和介观长度尺度。该策略的基础是一种新的“多代表”方法,基于粒子和现场理论模拟将其链接到统一框架中。初步结果表明,这种新方法可以通过几个数量级来加速计算,但相对于现有技术,没有近似或信息丢失。因此,这个新框架有可能实现目前棘手的聚合物模拟,并可以为中尺度结构如何从单体级化学中出现而提供新的基本见解。 该职业奖支持这种新的仿真方法的开发,该方法将方法扩展到化学特定的相互作用潜力及其在本质上无序的多肽中的应用。更一般而言,该项目还探讨了粒子和基于磁场的模拟之间的基本交集,以及如何将这些方法组合在一起以轻松访问分子构型,介观结构和自由能。该项目还将推进现场理论模拟方法,并将导致开发新工具和数值方法,从而扩大这种强大但又新颖的模拟技术的适用性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Lequieu其他文献

Towards a Hybrid Human-Computer Scientific Information Extraction Pipeline
迈向混合人机科学信息提取管道
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roselyne B. Tchoua;K. Chard;Debra J. Audus;Logan T. Ward;Joshua Lequieu;Juan J. de Pablo;Ian T Foster
  • 通讯作者:
    Ian T Foster
Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography.
使用高通量蛋白 A 色谱法研究宿主细胞蛋白与单克隆抗体的相互作用。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    V. Sisodiya;Joshua Lequieu;Maricel Rodríguez;Paul J. Mcdonald;Kathlyn P Lazzareschi
  • 通讯作者:
    Kathlyn P Lazzareschi
Combining particle and field-theoretic polymer models with multi-representation simulations.
Multiscale modeling of chromatin phase separation
  • DOI:
    10.1016/j.bpj.2023.11.2233
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Golembeski;Joshua Lequieu
  • 通讯作者:
    Joshua Lequieu

Joshua Lequieu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水相液滴化学在污染物分析、中间体监测、有机合成和污染物降解中的应用
  • 批准号:
    22376048
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
  • 批准号:
    82373758
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超低温钠离子电池CEI膜原位构筑、界面输运机制及电化学性能研究
  • 批准号:
    52302260
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
开放环境下终身强化学习方法研究及应用
  • 批准号:
    62376122
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Establishment of polymer informatics incorporating polymer-specific hierarchy and search for new electrolytes
建立结合聚合物特定层次结构的聚合物信息学并寻找新的电解质
  • 批准号:
    23H02027
  • 财政年份:
    2023
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of mechanism of hepatic organoid maturation in decellularized liver-specific-ECM scaffold
阐明脱细胞肝脏特异性ECM支架中肝类器官成熟的机制
  • 批准号:
    23K11833
  • 财政年份:
    2023
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decision-making support system for patient-specific treatment strategies using tumor stiffness imaging during head and neck radiotherapy
头颈放疗期间使用肿瘤硬度成像为患者制定治疗策略的决策支持系统
  • 批准号:
    23K14870
  • 财政年份:
    2023
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Creation of biochemical reaction field for target specific reaction in cellulo, by synthetic chromatin liquid-liquid phase separation
通过合成染色质液-液相分离,为纤维素中的目标特异性反应创建生化反应场
  • 批准号:
    22KJ0929
  • 财政年份:
    2023
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Molecular Basis for Species-specific Activation of TRPA1
TRPA1 物种特异性激活的分子基础
  • 批准号:
    23K06105
  • 财政年份:
    2023
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了