CAREER: Elucidating Biogenic Control of Heterogenous Ice Nucleation

职业:阐明异质冰核的生物控制

基本信息

  • 批准号:
    2336558
  • 负责人:
  • 金额:
    $ 74.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Water and ice are essential in shaping Earth's geology, atmosphere, and sustaining life. Biological ice nucleators control the transition of water from liquid to solid ice crystals in all these contexts. Biological ice nucleators can induce frost damage in plants, but can also promote vegetation growth by enabling rainfall. They impact surface water, the hydrological cycle, and climate. Understanding the how biological ice nucleators control ice formation is critical for climate models, weather prediction, and decision-making in landscape design and agriculture. Despite this importance, the molecular mechanisms behind biologically enabled freezing remain largely elusive. This project seeks to decipher the superiority of proteins as ice makers and mitigators, surpassing all other substances. This knowledge would enable breakthroughs in understanding key parts of the ecosystem we inhabit, with urgently needed input for cryopreservation, environmentally benign de-icing, and updated climate models. New freezing technologies are also particularly important as the U.S. increasingly pursues activities in the Arctic, where ice can be a logistical burden or an operational enabler. Current ice-related challenges disproportionally affect rural agricultural and subsistence-based communities. This project aims to enhance rural student engagement in STEM by fostering greater awareness and interest through service-learning and the use of modern media and to help the communities develop environmentally friendly capacities to better predict, navigate and mitigate ice-associated challenges in a changing world. Pure water does not freeze at 0 °C owing to the energy barrier associated with forming the initial crystallization nucleus. In nature, water usually freezes in a heterogeneous process, facilitated by the presence of particles that serve as ice nucleators. Bacterial ice-nucleating proteins (INP) are the best-known ice nucleators, enabling ice formation at temperatures close to 0 °C. The control biological INPs exert over the phase transition of water has direct relevance for disciplines as diverse as cryobiology, plant pathology, biomedical engineering, and climate science. Despite their importance, the structures and working mechanisms behind INP-mediated freezing remain unknown. Progress toward answering the question of what makes INPs so much better at nucleating ice than any other material requires a molecular picture of the structures and interactions that enable superior ice nucleation in their natural environment. The main research objectives of this project are: 1) Elucidate how superior bacterial ice nucleators nucleate ice, 2) Unravel the correlation between ice-nucleating abilities and assembly of ice-binding units into large functional domains 3) Develop a biomimetic approach to ice nucleation by incorporating ice-binding proteins as building blocks. This research will allow the derivation of structure-function relationships and optimal functionalities of biogenic ice nucleators, and will enable the development of tunable materials that can act as antifreeze or ice nucleating agents depending on the assembly state. Integrated educational initiatives will utilize innovative media outreach and service-learning programs targeted at rural communities to ignite a transformative awareness of STEM opportunities, and to enable opportunities to collectively discover effective and environmentally benign solutions for ice control.This project is jointly funded by the Division of Molecular and Cellular Biosciences and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
水和冰对于塑造地球的地质、大气和维持生命至关重要。在所有这些情况下,生物冰成核剂控制着水从液态到固态冰晶的转变,但也可以促进植物生长。它们影响地表水、逻辑循环和气候。了解生物冰成核剂如何控制冰的形成对于气候模型、天气预报以及景观设计和农业决策至关重要。生物冷冻背后的分子机制在很大程度上仍然难以捉摸,该项目旨在破译蛋白质作为制冰剂和缓解剂的优越性,超越所有其他物质,这一知识将有助于在理解我们所居住的生态系统的关键部分方面取得突破,并提供迫切需要的投入。随着美国越来越多地在北极开展活动,冰可能成为后勤负担或运营推动因素,冷冻保存、环境友好的除冰和更新的气候模型也尤为重要。当前与冰相关的挑战对农村农业和自给社区造成了不成比例的影响。该项目旨在通过服务学习和使用现代媒体提高农村学生对 STEM 的认识和兴趣,并帮助社区发展环境友好型能力。为了更好地预测、应对和缓解不断变化的世界中与冰相关的挑战,由于与形成初始结晶核相关的能量势垒,纯水在 0°C 时不会结冰。经过作为冰成核剂的颗粒的存在细菌冰成核蛋白 (INP) 是最著名的冰成核剂,可以在接近 0°C 的温度下形成冰,生物 INP 对水的相变具有直接的控制作用。与冷冻生物学、植物病理学、生物医学工程和气候科学等不同学科的相关性尽管 INP 介导的冷冻背后的结构和工作机制仍然未知。比任何其他材料更擅长使冰成核,需要了解在自然环境中实现卓越冰成核的结构和相互作用的分子图像。该项目的主要研究目标是:1)阐明高级细菌冰成核剂如何使冰成核,2。 ) 揭示冰成核能力与冰结合单元组装成大功能域之间的相关性 3) 通过将冰结合蛋白作为构建模块,开发冰成核的仿生方法。这项研究将能够推导生物冰成核剂的结构功能和最佳功能的关系,并将能够开发可根据组装状态充当防冻剂或冰成核剂的可调材料。综合教育计划将利用创新的媒体宣传。针对农村社区的服务学习计划,以激发对 STEM 机会的变革意识,并提供集体发现有效且环境友好的冰控制解决方案的机会。该项目由分子科学部共同资助该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konrad Meister其他文献

Anwendung eines agentenbasierten Modells der Verkehrsnachfrage auf die Schweiz / Application of an agent-based model of travel demand to the case of car traffic in Switzerland
Anwendung eines agentenbasierten Modells der Verkehrsnachfrage auf die Schweiz / 基于代理的出行需求模型在瑞士汽车交通案例中的应用
  • DOI:
    10.3929/ethz-a-005564901
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konrad Meister;M. Rieser;F. Ciari;Andreas Horni;M. Balmer;K. Axhausen
  • 通讯作者:
    K. Axhausen
Markierungsfreie Visualisierung von löslichen Metallcarbonylkomplexen in lebenden Zellen mithilfe von Raman‐Mikrospektroskopie
拉曼显微镜中的金属羰基复合体的自由可视化
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konrad Meister;Johanna Niesel;Ulrich Schatzschneider;Nils Metzler;Diedrich A. Schmidt;Martina Havenith
  • 通讯作者:
    Martina Havenith
MATSim-T: Architektur und Rechenzeiten
MATSim-T:建筑与研究
  • DOI:
    10.3929/ethz-a-005564902
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Balmer;M. Rieser;Konrad Meister;David Charypar;N. Lefebvre;K. Nagel;K. Axhausen
  • 通讯作者:
    K. Axhausen

Konrad Meister的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konrad Meister', 18)}}的其他基金

Collaborative Research: Unraveling the Structure and Mode of Action of Fungal Ice Nucleators
合作研究:揭示真菌冰核剂的结构和作用模式
  • 批准号:
    2308172
  • 财政年份:
    2022
  • 资助金额:
    $ 74.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the Structure and Mode of Action of Fungal Ice Nucleators
合作研究:揭示真菌冰核剂的结构和作用模式
  • 批准号:
    2116528
  • 财政年份:
    2021
  • 资助金额:
    $ 74.01万
  • 项目类别:
    Standard Grant

相似国自然基金

线粒体DNA损伤的机制阐明及其作为农药亚致死性暴露生物标志物的应用
  • 批准号:
    82373538
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
鉴定赖氨酸感知受体并阐明其调节代谢内稳态的机制
  • 批准号:
    32371231
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Cyclooctatin型抗肿瘤二萜生物合成途径阐明及化学多样性拓展
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
利用CITE-Seq技术阐明CD34+造血干细胞和祖细胞调控动脉粥样硬化发生和发展的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型-抗毒化碳限域磷化物异质结电解海水催化剂的设计与制备:阐明水分子和氯离子的竞争及效能增强机理
  • 批准号:
    22109090
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Elucidating the Correlative Interfacial Solvation, Nucleation, and Growth Processes in Battery Electrolytes
职业:阐明电池电解质中相关的界面溶剂化、成核和生长过程
  • 批准号:
    2339175
  • 财政年份:
    2024
  • 资助金额:
    $ 74.01万
  • 项目类别:
    Continuing Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    $ 74.01万
  • 项目类别:
    Standard Grant
CAREER: Elucidating spatial and epigenetic regulation of gene expression during human development using photopatterning and single-cell multiomics
职业:利用光模式和单细胞多组学阐明人类发育过程中基因表达的空间和表观遗传调控
  • 批准号:
    2339849
  • 财政年份:
    2024
  • 资助金额:
    $ 74.01万
  • 项目类别:
    Continuing Grant
Elucidating Hydrodynamics at Confined Interfaces for Artificial Active Fluidics and Beyond
阐明人工主动流体学及其他领域的受限界面处的流体动力学
  • 批准号:
    MR/X03660X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.01万
  • 项目类别:
    Fellowship
Elucidating the function of a protective protein in a novel in vitro reconstitution system for disaggregation of ubiquitinated amyloid fibrils
阐明保护蛋白在新型体外重构系统中用于解聚泛素化淀粉样蛋白原纤维的功能
  • 批准号:
    24K10522
  • 财政年份:
    2024
  • 资助金额:
    $ 74.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了