RAPID: DRL AI: A Community-Inclusive AI Chatbot to Support Teachers in Developing Culturally Focused and Universally Designed STEM Activities
RAPID:DRL AI:社区包容性 AI 聊天机器人,支持教师开展以文化为中心且通用设计的 STEM 活动
基本信息
- 批准号:2334631
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large language models (LLM) represent a new and rapidly changing technological advancement for K12 STEM learning. It is critical at this point in time to investigate and provide pathways for including justice, equity, inclusion, and community cultural capital and wealth in designing LLM-based educational systems. In the context of developing an AI chatbot, this RAPID project will research the ways in which teachers can plan universally designed and culturally relevant and responsive K12 STEM learning activities and environments. This research will contribute to an improved LLM that will incorporate novel methods to incorporate community data and reinforce knowledge from user communities into the LLM that is largely missing from large text corpora on which LLMs are usually trained. The AI chatbot will increase teacher capacity to create more inclusive STEM activities and support career pathways by facilitating the inclusion of more underrepresented learners in STEM careers. This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097) and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.The project will convene a series of focus groups to elicit training data for the chatbot, adopting a community-based participatory action research approach. This approach recognizes that AI can foster and grow community well-being by including the community in the design, orienting the AI to address community issues, and adopting an interdisciplinary and systems-based stance. The AI training will be sensitive to cultural nuances and techniques like sentiment analysis will help to understand the context and ensure culturally appropriate responses. Human-centered AI methods will be used to continuously incorporate user feedback by deploying the chatbot and actively seek responses from the diverse set of participants. This process will reinforce knowledge from user communities that is largely missing from content on which AIs are typically trained, producing an AI system that will generate more culturally aware text. Importantly, the project will create a model for developing community sourced AI LLMs that can continue to be refined and researched. A beta-level chatbot will be made available for teachers to improve their lesson plans, activity structures, and learning environments by the end of the project year for further research and development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大型语言模型(LLM)代表了K12 STEM学习的新技术进步。在此时间点,在设计基于LLM的教育系统时,调查并提供包括正义,公平,包容性以及社区文化资本和财富在内的途径。在开发AI聊天机器人的背景下,这个快速项目将研究教师可以计划普遍设计和文化相关和响应式K12 STEM学习活动和环境的方式。这项研究将有助于改进的LLM,该LLM将结合新颖的方法,以结合社区数据并将用户社区的知识加强到LLM中,而LLM在很大程度上缺少了通常对LLM的大型文本语料库所缺少的LLM。 AI聊天机器人将通过促进在STEM职业中纳入更多代表性的学习者,从而提高教师的能力来创建更具包容性的STEM活动并支持职业道路。 This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097) and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and数学(STEM)以及信息与通信技术(ICT)职业。该项目将召集一系列焦点小组,以获取聊天机器人的培训数据,采用一种基于社区的参与性行动研究方法。这种方法认识到,通过将社区包括在设计中,使AI介绍社区问题并采用跨学科和基于系统的立场,可以通过将社区包括在设计中来促进和发展社区福祉。 AI培训将对文化细微差别和情感分析等文化细微差别和技术敏感,将有助于理解环境并确保文化上适当的反应。以人为中心的AI方法将通过部署聊天机器人并积极寻求各种参与者的响应来连续合并用户反馈。该过程将加强用户社区的知识,这些知识通常是经过培训的AIS的内容,从而产生了AI系统,该系统将产生更多具有文化意识的文本。重要的是,该项目将创建一个模型,以开发可以继续完善和研究的社区来源的AI LLM。将在项目年度结束之前为教师提供一个Beta级聊天机器人,以改善其课程计划,活动结构和学习环境,以进行进一步的研究和发展。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来进行评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Price其他文献
Methods of Analyzing eContour's Engagement: Interrupted Time Series Analysis Versus Pre/Post Analysis
- DOI:
10.1016/j.ijrobp.2023.03.008 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Leah D'Souza;Lakshmi R. Narra;Yasamin Sharifzadeh;Erin.F. Gillespie;Jeremy Price;Diana Lin - 通讯作者:
Diana Lin
Vacuum system upgrade for extended Q-range small-angle neutron scattering diffractometer (EQ-SANS) at SNS
- DOI:
10.1016/j.mex.2016.09.002 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Christopher Stone;Derrick Williams;Jeremy Price - 通讯作者:
Jeremy Price
Jeremy Price的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水稻矮化卷叶基因DRL的图位克隆与作用机理研究
- 批准号:31501377
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RAPID: DRL AI: Understanding Perceptions and Use of AI in K-12 Education Using a Nationally Representative Sample
RAPID:DRL AI:使用全国代表性样本了解 K-12 教育中 AI 的认知和使用
- 批准号:
2334172 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
- 批准号:
2338987 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: DRL AI: Unlocking the Potential of Generative AI for Equity and Access in Robotics Education
RAPID:DRL AI:释放生成式 AI 的潜力,促进机器人教育的公平和访问
- 批准号:
2341190 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: DRL AI: Non-digital Hands-on AI Learning Resources for Middle-School Students
RAPID:DRL AI:面向中学生的非数字实践人工智能学习资源
- 批准号:
2343693 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID DRL AI: Empowering Teachers to Collaborate with Generative AI for Developing High-Quality STEM Learning Resources
RAPID DRL AI:让教师能够与生成式 AI 协作开发高质量的 STEM 学习资源
- 批准号:
2335975 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant