CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
基本信息
- 批准号:2332275
- 负责人:
- 金额:$ 63.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The continued growth of wind energy in the renewable energy landscape is key to the mitigation of climate change. However, this requires the construction of large-scale energy infrastructure that can be energy- and cost-intensive during manufacturing and decommissioning. In particular, there are critical sustainability challenges in the manufacturing and recycling of wind turbine blades. These challenges originate from the permanent nature of the fiber-reinforced thermoset polymer composites that underlie the structure of wind turbine blades. This CiviL Infrastructure research for climate change Mitigation and Adaptation (CLIMA) award supports fundamental research that accelerates the discovery of a new family of polymers, Covalent Adaptable Networks (CANs), and their composites that are mechanically strong yet reversible to enable recycling, repairing, and reprocessing. Knowledge to be obtained from this project facilitates cost-effective manufacturing and recycling of wind turbine blades, thereby improving the competitiveness and sustainability of wind energy in the global clean energy landscape and augmenting U.S. industry and economy. Additionally, this project supports outreach activities to engage researchers in national laboratories and the wind energy industry, educate K-12 students in composites, organic materials, computer-aided design and clean energy, recruit undergraduate researchers especially underrepresented groups, and enrich curricula through guest lectures.Covalent Adaptable Networks (CANs) are polymers crosslinked by covalent bonds that become reversible upon heating or other external stimuli. They combine the structural stability of thermosets and the malleability of thermoplastics. This project aims to establish a systematic research framework to discover new CANs and their composites to meet the multi-faceted requirements of material properties posed by the manufacturing, operation, and recycling of wind turbine blades. The research features an interdisciplinary collaboration among mechanics, materials, and manufacturing, and includes three components: molecular design, organic material synthesis, and mechanics of the new polymers. For molecular design, a cyber-platform combining machine learning and molecular dynamics (MD) simulations is created to generate candidate monomers of CANs. The synthesis component establishes a feasible molecular design space and allows CAN polymers to be synthesized from candidate monomers for manufacturing and testing. The mechanics component focuses on testing and modeling the mechanical behavior of the CAN polymers. The three components are integrated by preparing coupon-scale CAN composite samples and benchmarking their mechanical properties against the thermoset composites currently used in wind turbine blades. Manufacturing and recycling processes such as vacuum bag molding, thermoforming, lamination and chemical dissolution of CAN composites and the effects of processing conditions are also investigated. This project is supported jointly by the Mechanics of Materials and Structures (MoMS) and the Advanced Manufacturing (AM) programs of the Civil, Mechanical and Manufacturing Innovation (CMMI) Division in the Directorate for Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可再生能源环境中风能的持续增长是缓解气候变化的关键。但是,这需要建造大规模的能源基础设施,这些基础设施在制造和退役过程中可能是能源和成本密集的。特别是,在风力涡轮机叶片的制造和回收中存在着危意的可持续性挑战。这些挑战源于纤维增强的热固性聚合物复合材料的永久性,这些聚合物复合材料是风力涡轮叶片结构的基础。这项用于缓解气候变化和适应的民用基础设施研究(CLIMA)奖支持了基础研究,可以加速发现新的聚合物,共价适应性网络(CANS)及其复合材料及其在机械上具有强大但可逆的复合材料,以启用回收,维修,维修和批准。从该项目中获得的知识有助于风力涡轮机叶片的成本效益的制造和回收利用,从而提高了风能在全球清洁能源环境中的竞争力和可持续性,并增强了美国工业和经济。 Additionally, this project supports outreach activities to engage researchers in national laboratories and the wind energy industry, educate K-12 students in composites, organic materials, computer-aided design and clean energy, recruit undergraduate researchers especially underrepresented groups, and enrich curricula through guest lectures.Covalent Adaptable Networks (CANs) are polymers crosslinked by covalent bonds that become reversible upon heating or other external刺激。它们结合了热力学的结构稳定性和热塑性塑料的锻造性。该项目旨在建立一个系统的研究框架,以发现新的罐头及其复合材料,以满足制造,操作和风力涡轮机叶片回收的材料特性的多方面要求。该研究以力学,材料和制造业之间的跨学科合作为特色,包括三个组成部分:分子设计,有机材料合成和新聚合物的力学。对于分子设计,创建了网络平台组合机器学习和分子动力学(MD)模拟,以生成罐头的候选单体。合成成分建立了可行的分子设计空间,并允许从候选单体合成罐头聚合物进行制造和测试。力学成分侧重于测试和建模CAN聚合物的力学行为。这三个组件是通过准备优惠券规模可以复合样品并根据风力涡轮刀片当前使用的热固性复合材料进行机械性能进行基准的。还研究了CAN复合材料的制造和回收过程,例如真空袋成型,热形式,层压和化学溶解以及加工条件的影响。该项目得到了材料和结构(MOMS)的机制(MOMS)和高级制造(AM)计划的民用,机械和制造创新计划(CMMI)部门(CMMI)部门(CMMI)部门。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子的优点和广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Long其他文献
Microfluidic cytometry for high-throughput characterization of single cell cytoplasmic viscosity using crossing constriction channels
使用交叉收缩通道对单细胞细胞质粘度进行高通量表征的微流控细胞术
- DOI:
10.1002/cyto.a.23921 - 发表时间:
- 期刊:
- 影响因子:3.7
- 作者:
Ke Wang;Xiaohao Sun;Yi Zhang;Yuanchen Wei;Deyong Chen;Hengan Wu;Zijian Song;Rong Long;Junbo Wang;Jian Chen - 通讯作者:
Jian Chen
Mechanics of Polymer Networks with Dynamic Bonds
具有动态键的聚合物网络的力学
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Q. Guo;Rong Long - 通讯作者:
Rong Long
Current sharing in parallel fuel cell generation system based on model predictive control
基于模型预测控制的并联燃料电池发电系统均流
- DOI:
10.1016/j.ijhydene.2015.04.148 - 发表时间:
2015-09 - 期刊:
- 影响因子:7.2
- 作者:
Rong Long;Shuhai Quan;Liyan Zhang;Qihong Chen;Chen Zeng;Longhua Ma - 通讯作者:
Longhua Ma
Investigating the mechanical failure mechanisms of a novel CFRP composite to inform computational models
研究新型 CFRP 复合材料的机械失效机制,为计算模型提供信息
- DOI:
10.1117/12.3012737 - 发表时间:
2024 - 期刊:
- 影响因子:3.6
- 作者:
Guillaume Lostec;Louis Corcoran;Hongxuan Chen;Wei Zhang;Rong Long;Yinghua Jin - 通讯作者:
Yinghua Jin
Snakeskin-Inspired Elastomers with Extremely Low Coefficient of Friction under Dry Conditions.
受蛇皮启发的弹性体在干燥条件下具有极低的摩擦系数。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:9.5
- 作者:
Mengyuan Wang;S. Ghosh;C. Stafford;Adrienne K. Blevins;Sijia Huang;Jaylene Martinez;Rong Long;C. Bowman;J. Killgore;Min Zou;Yifu Ding - 通讯作者:
Yifu Ding
Rong Long的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Long', 18)}}的其他基金
Collaborative Research: Mechanics of Structural Toughening in Sutured Composites
合作研究:缝合复合材料的结构增韧力学
- 批准号:
2038505 - 财政年份:2021
- 资助金额:
$ 63.28万 - 项目类别:
Continuing Grant
DMREF/Collaborative Research: Switchable Underwater Adhesion through Dynamic Chemistry and Geometry
DMREF/合作研究:通过动态化学和几何形状切换水下粘附力
- 批准号:
2118878 - 财政年份:2021
- 资助金额:
$ 63.28万 - 项目类别:
Standard Grant
CAREER: Fracture Mechanics of Soft Dissipative Materials
职业:软耗散材料的断裂力学
- 批准号:
1752449 - 财政年份:2018
- 资助金额:
$ 63.28万 - 项目类别:
Standard Grant
Three-dimensional Micromechanics of Adhesion and Friction between Micro-pillar Arrays and Soft Gel Substrates
微柱阵列与软凝胶基底之间粘附和摩擦的三维微观力学
- 批准号:
1636203 - 财政年份:2016
- 资助金额:
$ 63.28万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332082 - 财政年份:2024
- 资助金额:
$ 63.28万 - 项目类别:
Continuing Grant
CLIMA/Collaborative Research: Landslide Triggering of Thermally Sensitive Slopes due to Climate Change
CLIMA/合作研究:气候变化引发热敏斜坡滑坡
- 批准号:
2332069 - 财政年份:2024
- 资助金额:
$ 63.28万 - 项目类别:
Standard Grant
CLIMA/Collaborative Research: Landslide Triggering of Thermally Sensitive Slopes due to Climate Change
CLIMA/合作研究:气候变化引发热敏斜坡滑坡
- 批准号:
2332068 - 财政年份:2024
- 资助金额:
$ 63.28万 - 项目类别:
Standard Grant
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332276 - 财政年份:2024
- 资助金额:
$ 63.28万 - 项目类别:
Standard Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332081 - 财政年份:2024
- 资助金额:
$ 63.28万 - 项目类别:
Continuing Grant