Collaborative Research: SLES: Verifying and Enforcing Safety Constraints in AI-based Sequential Generation
合作研究:SLES:验证和执行基于人工智能的顺序生成中的安全约束
基本信息
- 批准号:2331967
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) has achieved transformative impacts on various complex real-world challenges. Among its applications, sequential data are prevalent in many critical usages of AI when it directly engages with its users. Self-driving cars rely on AI to process sequences of sensor data from cameras and radars, and make a sequence of real-time decisions to ensure safe driving. Healthcare monitoring systems use AI to analyze sequences of patient health data, such as blood pressure, heart rate, and others, to detect anomalies and predict potential health issues. Chatbots utilize AI to understand natural language and generate safe, fair, and appropriate text responses as sequences of words and sentences. The sequential data produced by AI make its behavior hard to characterize because of the complex dependencies within the sequence, and a careless application of AI in these scenarios may lead to harmful consequences, such as a collision of an autonomous vehicle or the generation of biased or toxic texts. This project aims to study the safety of AI under scenarios with sequential data, provide assurance for its behavior in mission-critical environments, and ensure AI-based sequential generation can adhere to safety constraints and social norms. Ultimately, this research will help with reducing unexpected AI failures, preventing bias and discrimination in AI technologies, aligning AI systems with human values and societal norms, and building up public trust for AI-enabled applications.The technical contributions of this project consist of three thrusts. The first thrust develops a formal verification framework for assuring the safety of AI models for sequential generation tasks with rigorous mathematical guarantees. It includes a series of innovative verification algorithms for bound propagation and branch-and-bound for general non-linear functions involved in sequential generation models. These new verification methods will be integrated into the alpha-beta-CROWN neural network verifier, a well-known open-source toolbox developed by investigators. The second thrust involves training and inference algorithms that ensure sequential generation models comply with specified safety constraints, with a unique probabilistic framework that decomposes a safety constraint into action-level components and enforces them at each generation step. This approach can be integrated with model training to improve the safety performance of sequential generation models using posterior regularization techniques. Lastly, the third thrust aims to integrate the formal verification and constrained generation components above and apply them to three important real-world applications: safety of text generation, safety and stability of controlled systems, and robust AI-generated text detectors. This project will also result in tools to the broader AI community, including the alpha-beta-CROWN neural network verifier, and the shared data and benchmarks developed to evaluate the safety of sequential generation models.This project is supported by a partnership with the NSF and Open Philanthropy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)已经对各种复杂的现实世界挑战产生了变革性的影响。在其应用程序中,当它直接与用户互动时,顺序数据在AI的许多关键用法中都普遍存在。自动驾驶汽车依靠AI来处理来自相机和雷达的传感器数据序列,并做出一系列实时决策以确保安全驾驶。医疗保健监测系统使用AI来分析患者健康数据的序列,例如血压,心率等,以检测异常并预测潜在的健康问题。聊天机器人利用AI来理解自然语言,并将安全,公平和适当的文本响应作为单词和句子序列。 AI产生的顺序数据使其行为很难表征,因为序列内的复杂依赖性以及在这些情况下AI的粗心应用可能会导致有害后果,例如自动驾驶汽车的碰撞或产生有偏见的或有毒的文本。该项目旨在通过顺序数据研究AI的安全性,为其在任务至关重要的环境中的行为提供保证,并确保基于AI的顺序生成可以遵守安全限制和社会规范。最终,这项研究将有助于减少意外的AI失败,防止AI技术中的偏见和歧视,使AI系统具有人为价值和社会规范的AI系统,并建立对AI-Spable应用程序的公共信任。该项目的技术贡献由三个推力组成。第一个推力开发了一个正式的验证框架,以确保AI模型的安全性,以使用严格的数学保证来进行顺序生成任务。它包括一系列用于结合传播的创新验证算法,以及与顺序生成模型有关的一般非线性功能的分支和分支。这些新的验证方法将集成到Alpha-Beta-crown神经网络验证器中,这是研究人员开发的众所周知的开源工具箱。第二个推力涉及训练和推理算法,以确保顺序生成模型符合指定的安全限制,并具有独特的概率框架,可将安全性约束分解为动作级别的组件并在每个一代步骤中执行它们。可以将这种方法与模型训练集成,以改善使用后正规化技术的顺序生成模型的安全性能。最后,第三个推力旨在整合上面的正式验证和约束的生成组件,并将其应用于三个重要的现实世界应用:文本生成的安全性,受控系统的安全性和稳定性以及强大的AI生成的文本检测器。该项目还将为更广泛的AI社区提供工具,包括Alpha-Beta-crown神经网络验证器,并开发了共享的数据和基准,以评估顺序生成模型的安全性。该项目得到了与NSF的合作关系和开放的慈善事业的伙伴关系。这些奖项反映了NSF的范围和众所周知的Intortial Merit,该奖项通过智力的构建范围来进行了良好的影响,该奖项是由良好的构建构建的依据。 标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huan Zhang其他文献
Oral liposomes encapsulating ginsenoside compound K for rheumatoid arthritis therapy.
封装人参皂苷化合物 K 的口服脂质体用于类风湿性关节炎治疗。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.8
- 作者:
Zi;Songren Han;Guilin Cui;Beilin Xue;Jiaxin Li;Yuhong Man;Huan Zhang;Lesheng Teng - 通讯作者:
Lesheng Teng
Clinical Assessment of Brachial-Ankle Pulse Wave Velocity and Stiffness Index: Hypertriglyceridemia Effects on Arterial Stiffness
臂踝脉搏波速度和僵硬度指数的临床评估:高甘油三酯血症对动脉僵硬度的影响
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
An Zhao;Yinbao Chong;Hangmei Zhong;Jieshi Ma;Huan Zhang;Z. Luo;Gaosen Li;Xiaomin Luo - 通讯作者:
Xiaomin Luo
The PsbO homolog from Symbiodiniumkawagutii (Dinophyceae) characterized using biochemical and molecular methods
使用生化和分子方法鉴定来自 Symbiodinium kawagutii(甲藻纲)的 PsbO 同系物
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.7
- 作者:
R. E. Castillo;Tania Islas;P. Thomé;R. Iglesias;Senjie Lin;Huan Zhang;M. Villanueva - 通讯作者:
M. Villanueva
Biallelic HFM1 variants cause non-obstructive azoospermia with meiotic arrest in humans by impairing crossover formation to varying degrees.
双等位基因 HFM1 变异通过不同程度地损害交叉形成,导致人类非梗阻性无精症和减数分裂停滞。
- DOI:
10.1093/humrep/deac092 - 发表时间:
2022 - 期刊:
- 影响因子:6.1
- 作者:
Xuefeng Xie;G. Murtaza;Yang Li;Jianteng Zhou;Jingwei Ye;R. Khan;Long Jiang;Ihsan Khan;Muhammad Zubair;Hao Yin;Hanwei Jiang;Wei Liu;Baolu Shi;Xiaoning Hou;Chenjia Gong;Suixing Fan;Yue;Xiaohua Jiang;Yuanwei Zhang;Huan Zhang;Hui Ma;Qinghua Shi - 通讯作者:
Qinghua Shi
Studies of Uposomal bcl-2 Antisense Oligode ·-·
脂质体bcl-2反义寡核苷酸的研究·-·
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Dong He;Huan Zhang - 通讯作者:
Huan Zhang
Huan Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于维吾尔医学“体液学说”研究复方木尼孜其颗粒通过纠正B细胞—Th17细胞间失控的“交叉对话”改善SLE的作用机制
- 批准号:82360858
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
血清IgG N-糖肽作为诊断SLE的生物标志物研究
- 批准号:82360324
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
自噬异常导致CD8+Tem细胞亚群失衡在SLE发病中的作用及机制研究
- 批准号:82373474
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FSTL3/PTX3介导中性粒细胞胞外诱捕网(NETs)形成参与SLE病理妊娠的机制研究
- 批准号:82301920
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MiR-26a-5p/EZH2介导Rap1a调控T细胞迁移促进SLE发生的机制研究
- 批准号:32360165
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
- 批准号:
2331878 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
- 批准号:
2331879 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331781 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Foundations of Qualitative and Quantitative Safety Assessment of Learning-enabled Systems
合作研究:SLES:学习型系统定性和定量安全评估的基础
- 批准号:
2331938 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Bridging offline design and online adaptation in safe learning-enabled systems
协作研究:SLES:在安全的学习系统中桥接离线设计和在线适应
- 批准号:
2331880 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant