I-Corps: Contextualization of Explainable Artificial Intelligence (AI) for Better Health
I-Corps:可解释人工智能 (AI) 的情境化以改善健康
基本信息
- 批准号:2331366
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of the explainable Artificial Intelligence (XAI) methods for healthcare data. Currently, the number of electronic medical records is increasing while machine learning and deep learning models, especially large language models, have been employed to address healthcare needs. However, the healthcare domain is highly regulated and explainability for the black-box AI model becomes increasingly critical for any AI application. Users need to comprehend and trust the results and output created by machine learning algorithms. The proposed XAI technology may be used to describe an AI model, its expected impact, and potential biases. Further, the proposed technology may be used to transfer AI predictions into explainable medical interventions to enable the last mile delivery of AI in healthcare The commercial potential of these technologies may impact three major groups: health insurance companies who may provide better care management interventions and achieve personalized care delivery based on XAI; health analytic companies who rely on explanation to further enhance their products and meet the government regulations; and medical device startups who demand explainable analytical outputs based on the collected data from medical devices to enrich their user experience.This I-Corps project is based on the development of explainable Artificial Intelligence (XAI) methods applied to the healthcare industry. Providing explainability is critical for AI health applications. Healthcare is a unique domain with multimodality data: tableau data about patient demographic information, textual data about medical notes, time series data about vital sign measures, images about medical scan, and wavelet data about EEG and ECG. To provide a holistic view of these data, deep learning is used to create universal embeddings on different modalities of data and build the prediction models for health risks. But deep learning methods lack transparency and demand explainability. The proposed technology combines integrated gradients with ablation studies to identify the contributing factors of different data components in the explanation. In addition, the proposed platform adds knowledge graphs into the prediction and explanation workflow to detect the relationships between contributing features to generate an explanation with a holistic view, and translates weights or feature importance into risk scores to enable the last mile delivery of AI in healthcare. The proposed XAI method may be used to explain the importance of input data components, identify the contributing features at the individual patient level and the patient cohort level; scale and save computational resources; and self-improve by using reinforcement learning to enhance positive feedback.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目的更广泛的影响/商业潜力是开发可解释的人工智能(XAI)方法的医疗保健数据方法。 当前,当机器学习和深度学习模型(尤其是大型语言模型)已被用来满足医疗保健需求时,电子病历的数量正在增加。 但是,医疗保健领域受到高度调节,对于任何AI应用,黑盒AI模型的解释性越来越重要。 用户需要理解和信任机器学习算法创建的结果和输出。 提出的XAI技术可用于描述AI模型,其预期影响和潜在偏见。 此外,提出的技术可用于将AI预测转移到可解释的医疗干预措施中,以使AI在医疗保健中的最后一英里交付这些技术的商业潜力可能会影响三个主要群体:可以提供更好的护理管理干预措施并实现基于XAI的个性化护理服务的医疗保险公司;依靠解释来进一步增强其产品并符合政府法规的卫生分析公司;以及根据医疗设备收集的数据来丰富其用户体验的可解释分析输出的医疗设备初创公司。该I-Corps项目基于适用于医疗保健行业的可解释人工智能(XAI)方法的开发。 提供解释性对于AI健康应用至关重要。医疗保健是一个具有多模式数据的独特领域:有关患者人口统计信息的图表数据,有关医疗注释的文本数据,有关生命体征测量的时间序列数据,有关医疗扫描的图像以及有关脑电图和ECG的小波数据。为了提供这些数据的整体观点,深度学习用于在不同的数据模式上创建通用的嵌入,并为健康风险建立预测模型。但是深度学习方法缺乏透明度和需求解释性。 提出的技术将综合梯度与消融研究结合在一起,以确定解释中不同数据成分的因素。 此外,提出的平台还将知识图添加到预测和解释工作流程中,以检测贡献特征以生成具有整体视图的解释,并将权重或特征的重要性转化为风险分数,以使AI在医疗保健中的最后一英里交付。 提出的XAI方法可用于解释输入数据组件的重要性,确定在单个患者水平和患者队列水平上的贡献特征;扩展并节省计算资源;并通过使用强化学习来增强积极反馈来进行自我影响。该奖项反映了NSF的法定使命,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Ding其他文献
Metal–organic Framework-derived Carbon Decorated Ni–Sn Nanostructures for Ultrastable Metal-ion Batteries
用于超稳定金属离子电池的金属有机框架衍生碳装饰镍锡纳米结构
- DOI:
10.1016/j.coco.2021.100724 - 发表时间:
2021 - 期刊:
- 影响因子:8
- 作者:
Huan Shang;Danqing Jin;Longwei Ke;Kang Hu;Xueyou Wang;Ying Ding;Huijuan Lin;Kun Rui;Jixin Zhu;Wei Huang - 通讯作者:
Wei Huang
Non-uniform strained quantum well amplifiers for multichannel optical signal amplification in the WDM system
用于 WDM 系统中多通道光信号放大的非均匀应变量子阱放大器
- DOI:
10.1016/j.optcom.2020.126485 - 发表时间:
2021-02 - 期刊:
- 影响因子:2.4
- 作者:
Mingjun Xia;Ying Ding - 通讯作者:
Ying Ding
Effect of external electric current on adsorption of lead by Penicillium polonicum
外加电流对钋青霉吸附铅的影响
- DOI:
10.1080/01490451.2019.1613458 - 发表时间:
2019-05 - 期刊:
- 影响因子:2.3
- 作者:
Xiyang Xu;Ruixia Hao;Mingcan Wang;Ying Ding;Anhuai Lu - 通讯作者:
Anhuai Lu
Economic and clinical impact of nosocomial meticillin-resistant Staphylococcus aureus infections in Singapore: a matched case-control study.
新加坡医院内耐甲氧西林金黄色葡萄球菌感染的经济和临床影响:一项匹配的病例对照研究。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:6.9
- 作者:
S. K. Pada;Ying Ding;M. Ling;Li Yang Hsu;Arul Earnest;T. E. Lee;H. C. Yong;Roland Jureen;Dale Fisher - 通讯作者:
Dale Fisher
High prevalence of mupirocin-resistant staphylococci in a dialysis unit where mupirocin and chlorhexidine are routinely used for prevention of catheter-related infections.
在透析室中,莫匹罗星耐药葡萄球菌的患病率很高,其中莫匹罗星和氯己定常规用于预防导管相关感染。
- DOI:
10.1099/jmm.0.024539-0 - 发表时间:
2011 - 期刊:
- 影响因子:3
- 作者:
B. Teo;S. J. Low;Ying Ding;T. Koh;L. Hsu - 通讯作者:
L. Hsu
Ying Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Ding', 18)}}的其他基金
Conference: Travel: III: Student Travel Support for 2024 ACM The Web Conference (TheWebConf)
会议:旅行:III:2024 年 ACM 网络会议 (TheWebConf) 的学生旅行支持
- 批准号:
2412369 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
- 批准号:
2303038 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RAPID: Dashboard for COVID-19 Scientific Development
RAPID:COVID-19 科学发展仪表板
- 批准号:
2028717 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Data2Discovery: DataHub Platform for Drug Safety Analysis
I-Corps:Data2Discovery:用于药物安全分析的 DataHub 平台
- 批准号:
1505374 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Workshop Proposal: Scholarly Evaluation Metrics: Opportunities and Challenges
研讨会提案:学术评估指标:机遇与挑战
- 批准号:
0936204 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
Foreign identity as an advantage in workplace adaptation: Conceptualization, contextualization, and construction
外国身份作为工作场所适应的优势:概念化、情境化和构建
- 批准号:
24K16439 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automating Assessment of Contextualization of Care During the Clinical Encounter
在临床遇到的情况下自动评估护理情境化
- 批准号:
10595446 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Digital Chronic Pain Recommendations Map: Consolidation and Systematic Appraisal of Guideline Recommendations Regarding Management of Chronic Pain (e-ChronicPain RecMap)
数字慢性疼痛建议地图:关于慢性疼痛管理的指南建议的整合和系统评估 (e-ChronicPain RecMap)
- 批准号:
488685 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Operating Grants
Contextualization of Rural Microgrid Design for Improved Sustainability
农村微电网设计的情境化以提高可持续性
- 批准号:
2212438 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
COVID-19 Recommendations and Contextualization (eCOVID19RecMap) Extension
COVID-19 建议和情境化 (eCOVID19RecMap) 扩展
- 批准号:
465991 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Directed Grant