MFB: Better Homologous Folding using Computational Linguistics and Deep Learning

MFB:使用计算语言学和深度学习更好的同源折叠

基本信息

  • 批准号:
    2330737
  • 负责人:
  • 金额:
    $ 145.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Ribonucleic acid (RNA) is of utmost importance in our daily life because it plays essential roles in every living cell. Furthermore, our world was recently turned upside down by an RNA virus, which was then partially contained by an RNA vaccine. Contrary to common wisdom, RNA is not just an intermediate “messenger” between the more well-known DNA and protein, but it can also have profound biological functions such as controlling gene expression. These functions are determined by RNA structures (the “shapes” of the RNAs), and therefore accurate modeling of these structures is critical for understanding RNA functions and for designing vaccines, test kits, and drugs. However, existing experimental methods for determining RNA structure are extremely expensive and often limited to short sequences, and existing computational tools are rather slow and not completely accurate. This slowness hinders their applications to full-length viral genomes such as coronavirus (about 30,000 nucleotides or “letters”). Therefore, there is a critical need to develop better computational methods to predict RNA structures that are more accurate and more efficient and scalable to longer sequences such as whole genomes. Advances in this direction could improve our understanding of RNA viruses (which include common cold, influenza, Rabies, HIV, Ebola, polio, measles, and more) and increase our readiness to fight the next pandemic.This project develops efficient algorithms for predicting the structures of multiple related (“homologous”) RNA sequences such as SARS-CoV-2 variants. These algorithms will scale linearly in both the average sequence length and the number of sequences. This linear scaling will enable whole genome applications. The researchers aim to achieve these goals with ideas from two branches of artificial intelligence (AI): natural language processing and deep learning. Specifically, this project will improve three types of homologous folding algorithms and adapt them to structure discovery: (1) align-then-fold: first align the homologous sequences and then predict the consensus structure for the aligned sequences; (2) iteratively align-and-fold: iterate between sequence alignment and structure prediction; and (3) simultaneous align-and-fold: jointly predict alignment and structures. The team will adapt these fast methods to discover conserved structures using global structure prediction for RNA viral genomes and transcripts. This research will make it possible to discover new RNA structures and functions, and will help the design of vaccines, test kits, and drugs.This project is supported by the Divisions of Information and Intelligent Systems and of Chemistry and the Chemical Theory, Models, and Computational Methods Program in the Division of Chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
核糖核酸(RNA)在我们的日常生活中至关重要,因为它在每个活细胞中都起着重要作用。此外,我们的世界最近被RNA病毒颠倒了,然后由RNA疫苗部分含有。与共同的智慧相反,RNA不仅是更知名的DNA和蛋白质之间的中间“信使”,而且还可以具有强烈的生物学功能,例如控制基因表达。这些功能由RNA结构(RNA的“形状”)确定,因此,这些结构的准确建模对于理解RNA功能以及设计疫苗,测试试剂盒和药物至关重要。但是,确定RNA结构的现有实验方法非常昂贵,并且通常仅限于短序列,并且现有的计算工具相当缓慢且不完全准确。这种缓慢阻碍了它们对全长病毒基因组(例如冠状病毒)(约30,000个核卫星或“字母”)的应用。因此,迫切需要开发更好的计算方法来预测对更准确,更有效和可扩展到更长序列(例如整个基因组)的RNA结构。在这个方向上的进步可以提高我们对RNA病毒的理解(包括普通感冒,影响,狂犬病,艾滋病毒,埃博拉病毒,脊髓灰质炎,麻疹等),并提高我们准备与下一个大流行作斗争的准备。该项目开发了有效的算法,以预测多个相关(“同型”)诸如sars-cov-2 variants之类的多个相关(“同型”序列)。这些算法将以平均序列长度和序列数量线性扩展。该线性缩放将使整个基因组应用。研究人员的目的是通过两个人工智能分支(AI)的思想来实现这些目标:自然语言处理和深度学习。具体而言,该项目将改善三种类型的同源折叠算法并使其适应结构发现:(1)对齐 - 然后对同源序列进行排列,然后预测对齐序列的共识结构; (2)迭代对齐:迭代序列比对和结构预测之间; (3)同时对齐:共同预测对准和结构。该团队将使用RNA病毒基因组和转录本的全局结构预测来调整这些快速方法,以发现构造。这项研究将使发现新的RNA结构和功能成为可能,并将有助于设计疫苗,测试套件和药物。该项目得到信息和智能系统,化学和化学理论,化学理论,模型和计算方法计划的划分的支持。化学裁决反映了NSF的法定任务和构成诚实的良好的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Huang其他文献

Manifestations of chaos in relativistic quantum systems - a study based on out-of-time-order correlator
相对论量子系统中混沌的表现——基于乱序相关器的研究
  • DOI:
    10.1016/j.physo.2019.100001
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen-Di Han;Hong-Ya Xu;Liang Huang;Ying-Cheng Lai
  • 通讯作者:
    Ying-Cheng Lai
Predictive factors for the success of "one-off" ablation in single hepatocellular carcinoma patients who underwent percutaneous radiofrequency ablation
单例肝细胞癌经皮射频消融术“一次性”消融成功的预测因素
  • DOI:
    10.4103/2394-5079.172726
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianyun Long;Jing Li;Jie Cao;Liang Huang;Xianghua Zhang;Jinkai Liu;Yiqun Yan
  • 通讯作者:
    Yiqun Yan
Reduced-order discrete modeling method and nonlinear analysis of a discontinuous conduction mode buck converter with a constant power load
  • DOI:
    10.1016/j.egyr.2023.04.133
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Liang Huang
  • 通讯作者:
    Liang Huang
Experimental and numerical investigations into leakage behaviour of a novel prefabricated utility tunnel
新型预制综合管廊渗漏行为的实验和数值研究
  • DOI:
    10.1016/j.tust.2020.103529
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Zhenzhen Lin;Chengchao Guo;Pengpeng Ni;Dingfeng Cao;Liang Huang;Zhufeng Guo;Pu Dong
  • 通讯作者:
    Pu Dong
A refined Moho depth model from a joint analysis of gravity and seismic data of the South China Sea basin and its tectonic implications
南海盆地重力与地震数据联合分析的精细莫霍面深度模型及其构造意义
  • DOI:
    10.1016/j.pepi.2022.106966
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Liang Huang;Yonglin Wen;Chun-Feng Li;Xi Peng;Zhezhe Lu;Liuna Xu;Yongjian Yao
  • 通讯作者:
    Yongjian Yao

Liang Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Huang', 18)}}的其他基金

RI: Small: Low-Latency and High-Quality Simultaneous Translation
RI:小:低延迟、高质量同声翻译
  • 批准号:
    2009071
  • 财政年份:
    2020
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant
RI: Small: Fast and Accurate Natural Language Parsing and Generation by Marrying Deep Learning with Dynamic Programming
RI:小型:将深度学习与动态规划相结合,快速准确地进行自然语言解析和生成
  • 批准号:
    1817231
  • 财政年份:
    2018
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Scaling Up Discriminative Learning for Natural Language Understanding and Translation
EAGER:协作研究:扩大自然语言理解和翻译的判别学习
  • 批准号:
    1656051
  • 财政年份:
    2015
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Scaling Up Discriminative Learning for Natural Language Understanding and Translation
EAGER:协作研究:扩大自然语言理解和翻译的判别学习
  • 批准号:
    1449278
  • 财政年份:
    2014
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant
SBIR Phase II: Amphiphilic Copolymers as Thickening Agents for Personal Care Products
SBIR 第二阶段:作为个人护理产品增稠剂的两亲性共聚物
  • 批准号:
    1430647
  • 财政年份:
    2014
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant
SBIR Phase I: Amphiphilic Copolymers as Thickening Agents for Personal Care Products
SBIR 第一阶段:作为个人护理产品增稠剂的两亲性共聚物
  • 批准号:
    1248253
  • 财政年份:
    2013
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Standard Grant

相似国自然基金

基于更好落实“四个面向”的科学基金资助管理机制研究
  • 批准号:
    J2024014
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:
    专项基金项目
寻求更好的蛋白质结构:整合X射线衍射数据和蛋白质晶体MD模拟的新方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    150 万元
  • 项目类别:
    国际(地区)合作与交流项目
科学基金行政体系更好适应科学基金共同体需求的政策研究
  • 批准号:
    M1924001
  • 批准年份:
    2019
  • 资助金额:
    15 万元
  • 项目类别:
    专项基金项目
更好地发挥政府和市场功能协同的中国创新激励机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
P53变异的肝转移癌比无变异者有更好术后生存期的机理探讨
  • 批准号:
    39970721
  • 批准年份:
    1999
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Studentship
Creating Better Opportunities in the South West Through a Growth-Mindset-of-Opportunity Intervention
通过机会增长心态干预在西南地区创造更好的机会
  • 批准号:
    ES/Z502480/1
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Research Grant
Healthy Jozi: A Staged Approach to Better Workplace Food Choices and Chronic Disease Screening and Linkage to Care
健康 Jozi:更好的工作场所食物选择和慢性病筛查以及与护理联系的分阶段方法
  • 批准号:
    MR/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Research Grant
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
  • 批准号:
    MR/Y033760/1
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Research Grant
Decision 360: Open Finance for better lending decisions
决策 360:开放金融以做出更好的贷款决策
  • 批准号:
    10099934
  • 财政年份:
    2024
  • 资助金额:
    $ 145.31万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了