Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
基本信息
- 批准号:2330154
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to address the challenges and opportunities presented by the rapid proliferation of Grid Edge Resources (GERs) in modern power systems. Examples include distributed generators and smart inverters, smart thermostatically controlled loads, electric vehicles, and battery energy storage systems. Since GERs operate beyond traditional utility network boundaries and are controlled by customers, they introduce variable levels of controllability, observability, and vulnerability to cyber-attacks. The project will bring transformative change to the field of power system management through the development of a new analytical foundation and data-driven control methodologies to ensure the safe and secure operation of GERs. The intellectual merits of the project include the development of novel algorithmically robust data-driven control strategies that can withstand the unavoidable cyber vulnerabilities of GERs, and the advancement of our understanding of GER behavior and its impact on power system dynamics. The broader impacts of the project include enhancing the safety and security of the nation's critical energy infrastructure, improving the reliability of artificial intelligence and data-driven control methods across various safety-critical engineering systems, and promoting diversity and inclusion in two minority-serving institutions.The technical objectives of this project will be achieved by introducing a novel combination of model-based and data-driven control methods to guarantee that GERs are operated without violating power distribution systems’ constraints, despite the lack of direct control and validation capabilities in managing GERs in real-world power systems. Our approach ensures network-safe exploration and data-driven control at any stage of operation, despite model uncertainty. To address the challenge of unavoidable corrupt inputs from GERs, such as corruption in sensed load, we will develop grid edge control algorithms that are algorithmically robust to vulnerabilities in GERs. The proposed methods and results will be tested under realistic scenarios, considering diverse characteristics of various GREs, and under different network operating conditions and constraints, using real-world GER data and industry-standard computer simulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF项目旨在应对现代电力系统中电网边缘资源(GER)快速扩散带来的挑战和机遇。示例包括分布式发电机和智能逆变器,智能恒温控制负载,电动汽车和电池储能系统。由于GERS超越了传统的公用网络边界,并且受客户的控制,因此他们引入了可控性,可观察性和对网络攻击的脆弱性。该项目将通过开发新的分析基础和数据驱动的控制方法来为电力系统管理领域带来变革性的变化,以确保GERS的安全和安全操作。该项目的智力优点包括开发新颖的算法可靠的数据驱动的控制策略,这些控制策略可以承受GERS不可避免的网络脆弱性,以及我们对GER行为及其对电力系统动态的影响的理解的发展。该项目的广播公司的影响包括增强国家关键能源基础设施的安全性和安全性,提高人工智能和数据驱动的控制方法的可靠性,并提高各种安全性工程系统的数据驱动的控制方法,以及在两个少数族裔服务机构中促进该项目的技术和数据的分发能够促进基于模型和数据的数据,以确保该方法的多样性以及促进模型的数据运作,以确保该方法的运作能够实现。尽管缺乏直接控制和验证能力,但在管理现实世界电源系统中的GER方面缺乏限制。我们的方法可确保在操作的任何阶段(所需的模型不确定性)下网络安全的探索和数据驱动的控制。为了解决GERS不可避免的损坏输入的挑战,例如在感知负载中的损坏,我们将开发网格边缘控制算法,这些算法对GERS中的脆弱性具有强大的算法。提出的方法和结果将在现实的场景下,考虑各种GRE的各种特征,以及在不同的网络操作条件和约束下,使用现实世界中的GER数据和行业标准的计算机模拟。这一奖项反映了NSF的法定任务,并通过基金会的知识优点和广泛的影响来评估NSF的法定任务,并被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Mahnoosh Alizadeh其他文献
Optimistic Safety for Online Convex Optimization with Unknown Linear Constraints
具有未知线性约束的在线凸优化的乐观安全性
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Spencer Hutchinson;Tianyi Chen;Mahnoosh AlizadehSpencer Hutchinson;Tianyi Chen;Mahnoosh Alizadeh
- 通讯作者:Mahnoosh AlizadehMahnoosh Alizadeh
共 1 条
- 1
Mahnoosh Alizadeh的其他基金
CPS: Small: Collaborative Research: Models and System-Level Coordination Algorithms for Power-in-the-Loop Autonomous Mobility-on-Demand Systems
CPS:小型:协作研究:功率在环自主按需移动系统的模型和系统级协调算法
- 批准号:18371251837125
- 财政年份:2019
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
CAREER: Learning and Control Algorithms for Electricity Demand Response with Humans-in-the-Loop
职业:人在环电力需求响应的学习和控制算法
- 批准号:18470961847096
- 财政年份:2019
- 资助金额:$ 20万$ 20万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
面向多方协作机器学习的安全与隐私保护技术研究
- 批准号:62302192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模态动态图神经网络的教师在线协作反思测评与干预研究
- 批准号:62307033
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向车联网网络流量数据的多方协作学习风险控制机制研究
- 批准号:62373094
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
在线协作学习中的共享调节机制与干预策略研究
- 批准号:72304083
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于强化学习的海洋环境适配水声协作网络路由关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:24096522409652
- 财政年份:2024
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:24144742414474
- 财政年份:2024
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:23474232347423
- 财政年份:2024
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:23424982342498
- 财政年份:2024
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:24033122403312
- 财政年份:2024
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant