Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration

用于单片集成的半导体太赫兹行波放大器

基本信息

  • 批准号:
    2329940
  • 负责人:
  • 金额:
    $ 37.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Monolithic integration of terahertz (THz) amplifiers can pave way to miniaturization and mobility of many terahertz systems. In this project PIs propose a new configuration of terahertz amplifiers which can use traveling-wave phenomenology to provide terahertz gain in semiconductor media. Traveling wave gain occurs due to a synchronous interaction between moving charged particles and electromagnetic waves in its vicinity. Classically, this phenomenology has provided amplification of electromagnetic waves in a large array of vacuum electron devices (e. g. vacuum-electronics based travelling wave amplifier). Notably, translation of this phenomenon into semiconductor media and its scaling to sub-millimeter dimensions is highly desirable. This is because of the possibility of obtaining similar gains and a high output power within microwave monolithic integrated circuits (MMICs). This proposal will address new computing algorithms, material optimizations and device configuration innovations to create high gain amplifier topologies in 0.1 to 3 THz range based on electron-wave dynamics in semiconductor materials. This project aims at (1) introducing efficient numerical modeling tools to unveil the underlying complex phenomenology of electron-wave interactions in semiconductor materials and (2) investigating and validating the device concepts that exploit a synchronous electron-wave interaction for a THz wave amplification. Overall, the project will broadly impact the medical, security, and wireless-communication areas, and benefit the national infrastructure of security and defense resiliency through its impact on wireless communication and imaging technology. The project further supports workforce development through training and education of one graduate student and three undergraduate students via the summer internship program. The research outcomes as well as new scientific knowledge created from this proposal will be tied to the curriculum development by the PIs at UNL.The specific scientific innovations of the project will be focused on advancements of multiphysics, multiscale numerical solvers, material and device-configuration innovations, and experimental validation of the amplifier through fabrication and measurements. To reach an optimized device PIs exploit naturally confined 2D electron gas in high electron mobility transistors (HEMTs) and in other confined electron-gas systems for creating a gain media for terahertz electromagnetic waves. This is achieved by augmentation of slow-wave structures near 2D confined media to provide electron-wave interactions and amplification of THz waves. To model this problem, the project will first address the low computational efficiency and accuracy of current multiscale multiphysics global models. Project will specifically introduce time-domain numerical solvers that are based on multi-domain use of unconditional stability for gaining time-advantage and iterative corrections to maintain the accuracy. PIs will adapt Alternate Directional Implicit (ADI) and iterative ADI algorithm for their integration into multiphysics finite different time domain method to provide up to an order more efficient numerical solver. Secondly, the project will use the proposed solvers towards developing behavioral models, material, and geometry optimizations, and thus provide first estimates of power, gain, and bandwidth through these studies. Numerical studies will be used to optimize the devices for fabrication and measurements. In this context, the study will expansively investigate electromagnetic slow-wave structures, numerically model classical and new emerging material systems, and provide novel adaptation of the device concepts such as by using 2DEG-bilayer and superlattice. To validate the device concept, cold-tests are proposed in Ka-band, and device prototyping and measurements are proposed in W-band.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Terahertz(THZ)放大器的整体整合可以铺平许多Terahertz系统的微型化和活动性。在这个项目中,PI提出了Terahertz放大器的新配置,可以使用旅行波现象学在半导体培养基中提供Terahertz增益。由于移动带电的颗粒和其附近电磁波之间的同步相互作用,因此发生了波动波的增长。从经典上讲,这种现象学提供了在大量真空电子设备(例如基于真空电子的行动波放大器)中的电磁波扩增。值得注意的是,这种现象将这种现象转化为半导体培养基,其比例为亚毫米计的尺寸非常可取。这是因为在微波整体综合电路(MMIC)中可能获得类似的收益和高输出功率。该建议将介绍新的计算算法,材料优化和设备配置创新,以基于半导体材料中的电子波动力学创建0.1至3 THz范围内的高增益放大器拓扑。该项目的目的是(1)引入有效的数值建模工具,以揭示半导体材料中电子波相互作用的基本复杂现象学,以及(2)研究和验证利用同步电子波相互作用的设备概念,以实现THZ波放大。总体而言,该项目将广泛影响医疗,安全和无线通信区域,并通过其对无线通信和成像技术的影响,使国家安全和国防弹性的国家基础设施受益。该项目通过暑期实习计划对一名研究生和三名本科生的培训和教育进一步支持劳动力发展。该提案创建的研究成果以及新的科学知识将与PIS的课程开发相关。要达到优化的设备,PIS在高电子迁移率晶体管(HEMT)和其他限制的电子气体系统中自然限制了2D电子气体,以创建用于Terahertz电磁波的增益介质。这是通过增强2D限制介质附近的慢波结构来实现的,以提供电子波相互作用和THZ波的扩增。为了模拟此问题,该项目将首先解决当前多尺度多物理全球模型的计算效率低下和准确性。项目将特别引入基于多域使用无条件稳定性的时间域数值求解器,以获得时间优势和迭代校正以保持准确性。 PI将适应替代方向性隐式(ADI)和迭代ADI算法,以将其整合到多物理有限的不同时间域方法中,以提供更有效的数值求解器。其次,该项目将使用拟议的求解器来开发行为模型,材料和几何优化,从而通过这些研究提供了对功率,增益和带宽的首先估计。数值研究将用于优化用于制造和测量的设备。在这种情况下,该研究将大量研究电磁慢波结构,数字对经典和新的新兴材料系统进行建模,并提供对设备概念的新颖适应性,例如使用2DEG-BILAYER和SUPERTATCE。为了验证设备概念,在KA波段中提出了冷测,W-Band中提出了设备的原型制作和测量结果。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shubhendu Bhardwaj其他文献

2D Eigenmode Analysis Based on Physics Informed Neural Networks
基于物理信息神经网络的二维本征模分析
Numerical Demonstration of THz Traveling Wave Amplifications in 2-D Electron Gas (2DEG) Under Scattering-Free and Low-Charge Density Regime
无散射和低电荷密度条件下二维电子气 (2DEG) 太赫兹行波放大的数值演示
C-shaped, E-shaped and U-slotted patch antennas: Size, bandwidth and cross-polarization characterizations
C 形、E 形和 U 形槽贴片天线:尺寸、带宽和交叉极化特性

Shubhendu Bhardwaj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shubhendu Bhardwaj', 18)}}的其他基金

I-Corps: Smart Textile Charging Platform for Wearable and Portable Devices
I-Corps:适用于可穿戴和便携式设备的智能纺织品充电平台
  • 批准号:
    2329682
  • 财政年份:
    2022
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Standard Grant
I-Corps: Smart Textile Charging Platform for Wearable and Portable Devices
I-Corps:适用于可穿戴和便携式设备的智能纺织品充电平台
  • 批准号:
    2048613
  • 财政年份:
    2021
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Standard Grant

相似国自然基金

基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
智慧城市导向下基于街景视觉表征的“人-环境”数字互联机制
  • 批准号:
    52308015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于上转换发光微球的光子晶体构筑及其角度相关发光性能多重调控机制研究
  • 批准号:
    22308200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于非共价键协同效应的受限偶氮均聚物易位合成、组装及性能研究
  • 批准号:
    22361006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
  • 批准号:
    52365047
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Mode control of intense terahertz wave source based on angular momentum carried by spoof plasmon
基于欺骗等离子体激元携带角动量的强太赫兹波源模式控制
  • 批准号:
    22K14617
  • 财政年份:
    2022
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Characterization and control of defects in low-temperature-grown Bi-based compound semiconductors for novel terahertz wave emitters and detectors
用于新型太赫兹波发射器和探测器的低温生长铋基化合物半导体的缺陷表征和控制
  • 批准号:
    21K04910
  • 财政年份:
    2021
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ASCENT: Ultra-high Throughput Neural Recording using Flexible, Polymer-based Shanks as Terahertz Dielectric Waveguides
ASCENT:使用柔性聚合物柄作为太赫兹介电波导进行超高吞吐量神经记录
  • 批准号:
    2133138
  • 财政年份:
    2021
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Standard Grant
Generation of terahertz vortex based on reflectionless metasurface with high refractive index
基于高折射率无反射超表面的太赫兹涡旋产生
  • 批准号:
    21K18712
  • 财政年份:
    2021
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of terahertz optical devices based on printable heavily-doped conducting polymers
基于可印刷重掺杂导电聚合物的太赫兹光学器件的开发
  • 批准号:
    20K04561
  • 财政年份:
    2020
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了