CRII: III: Pursuing Interpretability in Utilitarian Online Learning Models

CRII:III:追求功利在线学习模式的可解释性

基本信息

  • 批准号:
    2245946
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

In today's world, the real-time generation of enormous amounts of data has become commonplace, spanning domains such as e-commerce, social media, environmental science, urban disaster and pandemic monitoring, and many others. Such streaming data necessitate data mining (DM) models that can analyze them in time as they emerge, derive actionable insights, and make adjustments on the fly. For instance, predicting crowd movement due to public events (such as concerts, games, parades, and protests) based on data streaming from social media and city sensors can aid in reducing the traffic by steering clear of overcrowded areas. However, as DM models become more prevalent in practice, interpretability has emerged as a vital issue. User comprehension and trust in DM model outputs are critical for their acceptance in daily routines and workflows. Nonetheless, existing research on data streams has focused mainly on model accuracy, producing models that are too complex for human interpretation. This gap between DM researchers and practitioners calls for new research that optimizes model accuracy and interpretability simultaneously. This project aims to bridge the gap by developing novel online algorithms that are transparent to human users and can provide a complete explanation of the logic behind each prediction, earning the trust of human operators and increasing legal defensibility when used to support decision-making in crucial domains such as healthcare, economy, security, and social goods.The overarching goal of this project is to advance interpretability research of online DM models through three research objectives: (1) understanding the dynamism of varying feature spaces and its impact on model structure; (2) quantifying model prediction uncertainty in the absence of adequate supervision labels; and (3) indexing and elucidating model inference paths. To achieve these objectives, the project will focus on four research thrusts. The first thrust will develop novel algorithms that capture and model the variation patterns of feature spaces through an expository feature correlation graph, allowing for joint learning of graphs and predictive models. The second thrust will focus on developing unsupervised methods to quantify the uncertainty of model predictions and identify geometric manifolds underlying data streams with memory-efficient structures. The third thrust will devise new systems to index, track, and illustrate the complete generation process of online predictions. The fourth thrust will establish evaluation metrics and protocols to standardize interpretability measurement in streaming data contexts. The project aims to contribute to interpretable data mining and machine learning research, which will help bridge the gap between data scientists and domain-specific forecasting experts. The educational component of the project will involve mentoring and educating researchers interested in pursuing DM careers in academia or industry, with a particular focus on underrepresented, financially disadvantaged, or disabled undergraduate students in computer science research. The project will also pioneer new classes at the forefront of data mining research and organize workshops at city libraries to engage with the broader public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今世界,实时生成海量数据已变得司空见惯,涉及电子商务、社交媒体、环境科学、城市灾害和流行病监测等领域。此类流数据需要数据挖掘 (DM) 模型,该模型可以在数据出现时及时对其进行分析,得出可操作的见解,并即时进行调整。例如,根据社交媒体和城市传感器的数据流预测公共活动(如音乐会、比赛、游行和抗议)引起的人群流动,可以通过避开过度拥挤的区域来帮助减少交通量。然而,随着 DM 模型在实践中变得越来越普遍,可解释性已成为一个至关重要的问题。用户对 DM 模型输出的理解和信任对于其在日常工作和工作流程中的接受度至关重要。尽管如此,现有的数据流研究主要集中在模型准确性上,产生的模型对于人类解释来说过于复杂。 DM 研究人员和从业者之间的差距需要新的研究来同时优化模型的准确性和可解释性。该项目旨在通过开发对人类用户透明的新型在线算法来弥合差距,这些算法可以对每个预测背后的逻辑提供完整的解释,赢得人类操作员的信任,并在用于支持关键决策时提高法律辩护性。该项目的总体目标是通过三个研究目标推进在线 DM 模型的可解释性研究:(1)了解不同特征空间的动态及其对模型结构的影响; (2)在缺乏足够监督标签的情况下量化模型预测的不确定性; (3)索引和阐明模型推理路径。为了实现这些目标,该项目将重点关注四个研究重点。第一个重点将开发新颖的算法,通过说明性特征相关图捕获和建模特征空间的变化模式,从而允许图和预测模型的联合学习。第二个重点将集中于开发无监督方法来量化模型预测的不确定性,并识别具有内存高效结构的数据流基础的几何流形。第三个重点将设计新系统来索引、跟踪和说明在线预测的完整生成过程。第四个重点将建立评估指标和协议,以标准化流数据环境中的可解释性测量。该项目旨在为可解释的数据挖掘和机器学习研究做出贡献,这将有助于弥合数据科学家和特定领域预测专家之间的差距。该项目的教育部分将涉及指导和教育有兴趣在学术界或工业界从事 DM 职业的研究人员,特别关注计算机科学研究中代表性不足、经济困难或残疾的本科生。该项目还将在数据挖掘研究的前沿开创新课程,并在城市图书馆组织研讨会,以吸引更广泛的公众参与。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yi He其他文献

Magnetic graphene oxide nanocomposites induce cytotoxicity in ADSCs via GPX4 regulating ferroptosis.
磁性氧化石墨烯纳米复合材料通过 GPX4 调节铁死亡诱导 ADSC 细胞毒性。
  • DOI:
    10.1016/j.ecoenv.2023.115745
  • 发表时间:
    2023-11-28
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Yi He;Fangyang Shi;Jiajun Hu;Hongyu Li;Xun Chen;Lingyu Yuan;Yunyang Lu;Weidong Du;Runze Li;Jie Wu;Feilong Deng;Dongsheng Yu
  • 通讯作者:
    Dongsheng Yu
Analysis of Factors Influencing Stock Market Volatility Based on GARCH-MIDAS Model
基于GARCH-MIDAS模型的股市波动影响因素分析
  • DOI:
    10.1155/2022/6176451
  • 发表时间:
    2022-01-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dan Ma;Tianxing Yang;Liping Liu;Yi He
  • 通讯作者:
    Yi He
Cobalt-Catalyzed Nitrogen Atom Insertion in Arylcycloalkenes.
芳基环烯烃中钴催化的氮原子插入。
KDM1A inhibition is effective in reducing stemness and treating triple negative breast cancer
KDM1A 抑制可有效减少干性并治疗三阴性乳腺癌
  • DOI:
    10.1007/s10549-020-05963-1
  • 发表时间:
    2020-10-14
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Mei Zhou;P. P. Venkata;S. Viswanadhapalli;Bridgitte E. Palacios;S. Alejo;Yihong Chen;Yi He;Uday P. Pratap;Junhao Liu;Yi Zou;Z. Lai;Takayoshi Suzuki;A. Brenner;R. Tekmal;R. Vadlamudi;Gangadhara R. Sareddy
  • 通讯作者:
    Gangadhara R. Sareddy
Ab initio modeling of phonon-assisted relaxation of electrons and excitons in semiconductor nanocrystals for multiexciton generation
用于多激子生成的半导体纳米晶体中电子和激子声子辅助弛豫的从头建模

Yi He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yi He', 18)}}的其他基金

CAREER: Revealing the interaction mechanisms of PICK1 using multiscale modeling
职业:使用多尺度建模揭示 PICK1 的相互作用机制
  • 批准号:
    2237369
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
  • 批准号:
    2236578
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
LEAPS-MPS:Revealing Key Residues and Physical Interactions Drive the Structural and Dynamic Changes in Subdomains of PICK1
LEAPS-MPS:揭示关键残基和物理相互作用驱动PICK1子域的结构和动态变化
  • 批准号:
    2137558
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

睡眠剥夺通过上调BMAL1/IL-17轴促进三级淋巴结构形成加重哮喘的研究
  • 批准号:
    82300039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
学术交流类: 第三届华人能源与人工环境国际学术会议
  • 批准号:
    52342801
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
富醌生物炭促进三价铁还原强化人工湿地总氮去除作用机制及调控策略研究
  • 批准号:
    52300213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维拓扑结构支架在定向引导神经干细胞修复耳蜗螺旋神经节中的作用及机制研究
  • 批准号:
    82301331
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NEPhos_Phosphoregulation of ESCRT-III during nuclear envelope reformation
NEPhos_ESCRT-III 核膜重构过程中的磷酸调节
  • 批准号:
    EP/Z00098X/1
  • 财政年份:
    2025
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Fellowship
タンパク質構成全キラルアミノ酸の三次元HPLC分析法開発と網羅的疾患マーカー探索
构建蛋白质全手性氨基酸三维HPLC分析方法并全面寻找疾病标志物
  • 批准号:
    24KJ1800
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
HDAC3によるゲノム三次元区画化制御に着目した甲状腺ホルモン不応症の病態解明
阐明甲状腺激素难治性疾病的病理学,重点关注 HDAC3 对基因组三维区室化的调节
  • 批准号:
    24K11682
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Carrier recombination dynamics in III-N photodetectors
III-N 光电探测器中的载流子复合动力学
  • 批准号:
    2341747
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
IUCRC Phase III University of Southern Mississippi Center for Science Center for Marine Fisheries (SCEMFIS)
IUCRC 第三阶段 南密西西比大学海洋渔业科学中心 (SCEMFIS)
  • 批准号:
    2332982
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了