CDS&E/Collaborative Research: In-Situ Monitoring-Enabled Multiscale Modeling and Optimization for Environmental and Mechanical Performance of Advanced Manufactured Materials

CDS

基本信息

项目摘要

This Computational and Data-Enabled Science and Engineering (CDS&E) project will contribute to the real-time control and optimization of additive manufactured (AM) metal components to improve their environmental and mechanical performance. Metal AM has gradually gained acceptance in industries for producing high-value components, thanks to its excellent performance in fabricating complex geometries. However, the lack of efficient process-structure-performance (PSP) models, particularly for environment- assisted failure performance, hinders the broad application of metal AM. Quality assurance heavily depends on trial-and-error, which is expensive, time-consuming, and error-prone. This award will establish a physics-constrained artificial intelligence (PCAI) framework to promote the fundamental understanding of how the unique features and defects introduced by the AM process affect the environmental-assisted performances of as-built parts. The tools developed will be made available to the academic and industrial communities. Furthermore, new courses of the PCAI for advanced manufacturing will be created for both undergraduate and graduate students, cultivating future workforce with skills in AI, physical simulation, and advanced manufacturing.This project will establish an in-situ processing data-driven framework that can effectively link manufacturing process to environmental-related performance for part-scale laser powder bed fusion (L-PBF) and enable process optimization for improved environment-assisted failure performance. The technical approaches involve 1) Establish a PCAI-based surrogate model that can incorporate in-situ monitoring data to predict part-scale residual stress and microstructures; 2) Build a physics-based reduced-order model that can quantitatively correlate the residual stress and microstructures to the corrosion fatigue properties of as-built parts; 3) Establish a process optimization method to achieve the targeted corrosion fatigue properties for part-scale L-PBF. This work may also be applicable to other manufacturing processes such as direct energy deposition, biomanufacturing, and nanomanufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该计算和数据支持的科学与工程 (CDS&E) 项目将有助于实时控制和优化增材制造 (AM) 金属部件,以改善其环境和机械性能。金属增材制造由于其在制造复杂几何形状方面的优异性能,已逐渐在生产高价值部件的行业中获得认可。然而,缺乏有效的工艺结构性能(PSP)模型,特别是环境辅助失效性能模型,阻碍了金属增材制造的广泛应用。质量保证在很大程度上取决于试错,这是昂贵、耗时且容易出错的。该奖项将建立一个物理约束人工智能(PCAI)框架,以促进对增材制造工艺引入的独特特征和缺陷如何影响竣工部件的环境辅助性能的基本理解。开发的工具将提供给学术界和工业界。此外,还将为本科生和研究生开设先进制造PCAI新课程,培养具有人工智能、物理仿真和先进制造技能的未来劳动力。该项目将建立一个现场处理数据驱动的框架,有效地将制造工艺与零件规模激光粉末床熔合 (L-PBF) 的环境相关性能联系起来,并实现工艺优化以改善环境辅助故障性能。技术途径包括:1)建立基于PCAI的替代模型,结合现场监测数据来预测局部残余应力和微观结构; 2)建立基于物理的降阶模型,可以定量地将残余应力和微观结构与竣工零件的腐蚀疲劳性能相关联; 3)建立工艺优化方法,以实现部分L-PBF的目标腐蚀疲劳性能。这项工作也可能适用于其他制造工艺,例如直接能量沉积、生物制造和纳米制造。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yao Fu其他文献

Diffusion coefficients of zirconium (IV) acetylacetonate: Measurements and correlation in both pressurized liquid and supercritical fluid
乙酰丙酮锆 (IV) 的扩散系数:在加压液体和超临界流体中的测量和相关性
  • DOI:
    10.1016/j.molliq.2024.124149
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Yao Fu;Guoxiao Cai;T. Funazukuri;Chang Yi Kong
  • 通讯作者:
    Chang Yi Kong
A Thermal Excitation Based Partial Discharge Detection Method for Cable Accessory
基于热激励的电缆附件局部放电检测方法
  • DOI:
    10.1109/tpwrd.2023.3254907
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Zerui Li;K. Zhou;Xiangdong Xu;P. Meng;Yao Fu;Zijin Zeng
  • 通讯作者:
    Zijin Zeng
Theoretical estimation of Hammett σp constants of organic radical groups
有机基团哈米特Ïp常数的理论估计
  • DOI:
    10.1007/s11434-010-4015-5
  • 发表时间:
    2010-09-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Wang;Yao Fu;Lei Liu
  • 通讯作者:
    Lei Liu
Tumor suppressive activity of AHR in environmental arsenic-induced carcinogenesis.
AHR 在环境砷诱发的致癌作用中的肿瘤抑制活性。
  • DOI:
    10.1016/j.taap.2023.116747
  • 发表时间:
    2023-11-05
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ziwei Wang;Yao Fu;Akimasa Seno;Zhuoyue Bi;Aashna S. Pawar;Haoyan Ji;B. Almutairy;Yiran Qiu;Wenxuan Zhang;Chitra Thakur;Fei Chen
  • 通讯作者:
    Fei Chen
Beneficial Reuse of Municipal Solid Waste Incineration Bottom Slag in Civil Engineering
城市生活垃圾焚烧底渣在土木工程中的有益回用
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Xue;Wen;Yao Fu
  • 通讯作者:
    Yao Fu

Yao Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yao Fu', 18)}}的其他基金

NSFGEO-NERC: Collaborative Research: Role of the Overturning Circulation in Carbon Accumulation (ROCCA)
NSFGEO-NERC:合作研究:翻转环流在碳积累中的作用(ROCCA)
  • 批准号:
    2400434
  • 财政年份:
    2024
  • 资助金额:
    $ 36.92万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Corrosion Fatigue Behavior of Additively Processed Metals through an Integrated Experimental and Computational Approach
职业:通过综合实验和计算方法了解增材加工金属的腐蚀疲劳行为
  • 批准号:
    2044972
  • 财政年份:
    2021
  • 资助金额:
    $ 36.92万
  • 项目类别:
    Standard Grant
Fundamental Mechanisms in Stress-Aided Variant Selection of Nanoscale Precipitation
纳米级沉淀的应力辅助变体选择的基本机制
  • 批准号:
    2104941
  • 财政年份:
    2021
  • 资助金额:
    $ 36.92万
  • 项目类别:
    Continuing Grant
CAREER: Understanding the Corrosion Fatigue Behavior of Additively Processed Metals through an Integrated Experimental and Computational Approach
职业:通过综合实验和计算方法了解增材加工金属的腐蚀疲劳行为
  • 批准号:
    2139383
  • 财政年份:
    2021
  • 资助金额:
    $ 36.92万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 36.92万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
  • 批准号:
    2309102
  • 财政年份:
    2023
  • 资助金额:
    $ 36.92万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 36.92万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302764
  • 财政年份:
    2023
  • 资助金额:
    $ 36.92万
  • 项目类别:
    Continuing Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 36.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了