NRT-QL: Interdisciplinary Graduate Program in Quantum Materials Science and Engineering

NRT-QL:量子材料科学与工程跨学科研究生项目

基本信息

  • 批准号:
    2244310
  • 负责人:
  • 金额:
    $ 300万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Harnessing and engineering the useful properties of materials has been a recurrent theme in the history of human advancement from mastering metallurgy in the Bronze age to creation of semiconductor devices in today’s digital society. Quantum materials, which are materials where quantum mechanical effects are critical to their useful properties, have played an important part in this technological progress, but are poised to do so even more. For example, there is growing interest and excitement about quantum computers, as well as both government and industry funding of research and development in the quantum sciences. This National Science Foundation Research Traineeship (NRT) award to Yale University will create an interdisciplinary Ph.D. program on quantum materials and prepare trainees for impactful professional careers in the field of quantum materials science and engineering. Additionally, the program will strengthen and diversify the US scientific and technical workforce in the quantum sciences. This program will train 30 Ph.D. students, including 17 funded trainees, from the disciplines of Applied Physics, Chemistry, Computer Science, Mechanical Engineering and Materials Science, and Physics. The program will provide training through education, research, industry and national laboratory summer internships, and professional development. Trainees will become experts in creating, using, and understanding quantum materials, while gaining firsthand knowledge of developing skills in team science, science communication, outreach, teaching, and mentoring. The research plan of this NRT program focuses on three related themes: (a) understanding the growth processes of topological crystalline nanowires at the atomic scale, (b) creation and engineering of nanowire-based topological interconnects and their electron transport properties, and (c) topological superconducting nanowires for potential quantum bit storage. The interdisciplinary and collaborative research effort will bring together experimental efforts in materials growth, characterization via electron transport and surface microscopy, and computational work in electronic structure calculations, machine learning, and molecular dynamics simulations. For example, for theme (a), first-principles electronic structure calculations will provide structural and energetic data on likely materials configurations to train machine learning models to produce high quality classical potential energy functions. These can be used for large-scale and long-time molecular dynamics simulations of the material growth process; the key structural configurations found in the dynamics will then be fed back to the first principles calculations to recalibrate and refine the machine-learned potentials in a closed-loop manner. A key feature of the traineeship is a new flagship course, containing hands-on modules allowing trainees to analyze data from various NRT program-related research laboratories, that will introduce quantum materials science and engineering, the NRT trainers, and research projects to the trainees. The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.  This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从青铜时代掌握冶金技术到当今数字社会中半导体器件的制造,利用和设计材料的有用特性一直是人类进步史上反复出现的主题。量子材料是量子力学效应对其至关重要的材料。有用的特性在这一技术进步中发挥了重要作用,而且还将发挥更大的作用,例如,人们对量子计算机的兴趣和兴奋不断增长,以及政府和行业对量子研究和开发的资助。科学。耶鲁大学获得的国家科学基金会研究实习生 (NRT) 奖项将创建一个关于量子材料的跨学科博士项目,并为实习生在量子材料科学和工程领域的有影响力的职业生涯做好准备。此外,该项目还将加强和多样化。该项目将培养 30 名博士生,其中包括 17 名受资助的实习生,他们来自应用物理、化学、计算机科学、机械工程和材料科学以及物理等学科。该计划将通过教育、研究、工业和国家实验室暑期实习和专业发展提供培训,学员将成为创造、使用和理解量子材料的专家,同时获得团队科学、科学传播和推广技能的第一手知识。该 NRT 项目的研究计划侧重于三个相关主题:(a) 了解原子尺度的拓扑晶体纳米线的生长过程,(b) 基于纳米线的拓扑互连及其电子的创建和工程。传输特性,以及(c) 用于潜在量子位存储的拓扑超导纳米线这项跨学科和协作研究工作将汇集材料生长、电子传输和表面显微镜表征以及电子结构计算、机器学习和分子动力学模拟方面的实验工作。例如,对于主题(a),第一原理电子结构计算将提供有关可能材料配置的结构和能量数据,以训练机器学习模型以产生高质量的经典势能函数,这些可用于大规模和大规模的计算。对材料生长过程进行长时间的分子动力学模拟;然后将动力学中发现的关键结构配置反馈到第一原理计算中,以闭环方式重新校准和完善机器学习的势。该培训课程是一门新的旗舰课程,包含实践模块,允许学员分析来自各个 NRT 项目相关研究实验室的数据,向学员介绍量子材料科学与工程、NRT 培训师和研究项目。培训 (NRT) 计划旨在鼓励为 STEM 研究生教育培训开发和实施大胆的、具有潜在变革性的新模式,该计划致力于通过全面的培训模式,在高度优先的跨学科或融合研究领域对 STEM 研究生进行有效培训。具有创新性、基于证据,并符合不断变化的劳动力和研究需求。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sohrab Ismail-Beigi其他文献

Tuning two-dimensional phase formation through epitaxial strain and growth conditions: silica and silicate on NixPd1−x(111) alloy substrates
  • DOI:
    10.1039/c9nr05944j
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Chao Zhou;Xin Liang;Gregory S. Hutchings;Jin-Hao Jhang;Zachary S. Fishman;Rongting Wu;Adrian Gozar;Udo D. Schwarz;Sohrab Ismail-Beigi;Eric I. Altman
  • 通讯作者:
    Eric I. Altman
Ferroelectric oxide surface chemistry: water splittingviapyroelectricity
  • DOI:
    10.1039/c6ta00513f
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Arvin Kakekhani;Sohrab Ismail-Beigi
  • 通讯作者:
    Sohrab Ismail-Beigi
Causes of ferroelectricity in HfO2-based thin films: anab initioperspective
  • DOI:
    10.1039/c9cp01880h
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Mehmet Dogan;Nanbo Gong;Tso-Ping Ma;Sohrab Ismail-Beigi
  • 通讯作者:
    Sohrab Ismail-Beigi
Polarization-driven catalysisviaferroelectric oxide surfaces
  • DOI:
    10.1039/c6cp03170f
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Arvin Kakekhani;Sohrab Ismail-Beigi
  • 通讯作者:
    Sohrab Ismail-Beigi

Sohrab Ismail-Beigi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sohrab Ismail-Beigi', 18)}}的其他基金

CMMT: Slave-boson approach for electronically correlated metal oxides
CMMT:电子相关金属氧化物的从属玻色子方法
  • 批准号:
    2237469
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
EAGER: Enabling Quantum Leap: 2D metal oxides (2DTMOs) hosting strongly bound excitons
EAGER:实现量子飞跃:拥有强束缚激子的二维金属氧化物 (2DTMO)
  • 批准号:
    1838463
  • 财政年份:
    2018
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Massively-parallel Electronic Structure Calculations for Energy Applications
能源应用的大规模并行电子结构计算
  • 批准号:
    1614491
  • 财政年份:
    2016
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Massively-parallel Electronic Structure Calculations for Energy Applications
能源应用的大规模并行电子结构计算
  • 批准号:
    1614491
  • 财政年份:
    2016
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: Scalable, Extensible, and Open Framework for Ground and Excited State Properties of Complex Systems
SI2-SSI:协作研究:复杂系统基态和激发态属性的可扩展、可扩展和开放框架
  • 批准号:
    1339804
  • 财政年份:
    2013
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
First Principles Investigations of Boron Nanostructures
硼纳米结构的第一性原理研究
  • 批准号:
    1104974
  • 财政年份:
    2011
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
First Principles Investigations of Boron Nanostructures
硼纳米结构的第一性原理研究
  • 批准号:
    0808665
  • 财政年份:
    2008
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant

相似国自然基金

C1QL1通过HSP90α/VCP-ERS/UPR轴抑制乳腺癌的作用及机理研究
  • 批准号:
    82302960
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
C1ql1基因介导G蛋白偶联受体通路在螺旋神经节细胞树突发育趋化过程中的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
胶质瘤干细胞表达神经突触组织者蛋白C1QL1促进恶性胶质瘤发生发展的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
土壤食细菌线虫增强荧光假单胞菌Pf-5拮抗青枯病原菌QL-Rs1115的作用机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
C1QL3敲除与定点转基因大鼠模型建立及该基因对胶质细胞吞噬调节机制的研究
  • 批准号:
    31970508
  • 批准年份:
    2019
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Co-creating digital education about parenting and father-inclusive practice: combining QL impact research and commercialisation for the social good
共同创建有关育儿和父亲包容性实践的数字教育:将 QL 影响研究与商业化相结合,造福社会
  • 批准号:
    MR/Y00356X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 300万
  • 项目类别:
    Fellowship
NRT-QL: Quantum Photonics interdisciplinary training to Advance Quantum Technologies (QPAQT)
NRT-QL:量子光子学跨学科培训以推进量子技术 (QPAQT)
  • 批准号:
    2244462
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-QL: A Program for Training a Quantum Workforce
合作研究:NRT-QL:量子劳动力培训计划
  • 批准号:
    2125906
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-QL: A Program for Training a Quantum Workforce
合作研究:NRT-QL:量子劳动力培训计划
  • 批准号:
    2125899
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
NRT-QL: Accelerating Quantum-Enabled Technologies
NRT-QL:加速量子技术
  • 批准号:
    2021540
  • 财政年份:
    2020
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了