QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
基本信息
- 批准号:2326838
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will develop and demonstrate methods which implement quantum sensing in the organic linker components of metal-organic framework (MOF) molecular assemblies. This work will serve to promote the progress of science by producing models which reveal how the synthesis parameters of MOFs determine the quantum coherence and other properties underpinning their use as sensors. Through this newfound understanding, researchers will be able to engineer MOF designs with optimized quantum sensing performance and thereby establish novel MOF-based quantum sensing tools which are immediately applicable both for general-purpose chemical sensing and for fundamental research in quantum information science (QIS), with performance equal or superior to existing tools. Beyond generic uses, these MOF-based quantum sensors will have further impact as a new and powerful means to interrogate and characterize the MOFs themselves; as MOFs have broad potential for transformative applications across catalysis, carbon capture, energy storage, and ex-vivo biochemical sensing, among other fields, this novel characterization tool is poised to accelerate research which applies MOFs for the benefit of society. This project will also help to broaden participation in science education and the science workforce. This team will involve undergraduate researchers in all aspects of the project, and extend the educational impact of research activities by adapting data and designs into course materials. Further, this team will institute a mentorship project where they support community college transfer students (largely first generation) through quantum mechanics courses in UC Berkeley’s College of Chemistry, and the team will perform outreach to predominantly undergraduate institutions in the San Francisco Bay Area, drawing upon this project’s outputs in each case.This project will develop designer quantum sensor platforms based on “hyperpolarized” nuclear spins in MOFs. This novel bottom-up approach leverages the ability of MOFs to maintain atomically precise 3D arrays of quantum sensors, with fine synthetic control of sensor spacing, crystal topology, enrichment, and inter-sensor coupling. Moreover, the high internal surface area of MOFs and their resultant ability to imbibe guest molecules will yield “bulk-as-a-surface” quantum sensors with far greater sensitivity and resolution for chemo-sensing than conventional approaches. Organic linker elements in MOFs can host optically polarizable electrons which can be made to transfer spin polarization to surrounding nuclear spins either in the MOF structure itself or in guest molecules. The long ~90s spin coherence lifetimes of hyperpolarized nuclear spins recently demonstrated by PI Ajoy will enable these nuclei to serve as highly sensitive magnetometers and as quantum chemical sensors by relaying nuclear magnetic resonance (NMR) spectral data. The team will combine bottom-up synthesis of MOFs across a range of parameters, first principles computational models of electronic and vibrational phenomena developed in concert with the Materials Project, and experimental spectroscopic and other characterization data to determine the impact of synthetic parameters on the physical, chemical, and quantum coherence properties of the resulting MOF to optimize sensing platforms. Unique instrumentation recently developed in UC Berkeley will allow coherence measurements via NMR and electron paramagnetic resonance (EPR) at various temperatures and magnetic fields. This project will also investigate 2D MOFs and intercalation compounds as risk mitigation and to gain deeper insights into factors impacting coherence and sensor performance. This team's quantum sensing approach based on MOFs will introduce a paradigmatic advance over current methods (e.g. NV centers) that rely on electronic spins near surfaces for sensing: the high porosity and tunable chemical affinity of MOFs will allow the entire material bulk to usefully perform sensing, while independence from crystal orientation will allow deployment of sensors to locations of interest. The ability to array quantum sensors in 3D with atomic precision and control their topology, enrichment, and inter-sensor coupling through synthesis opens avenues for “designer” platforms for quantum sensing. The use of nuclear spin hyperpolarization in MOFs and the long coherence times attainable with nuclear spins will further aid sensitivity and sensing resolution toward the goal of transformative applications. The team anticipates these sensors will allow determination of the physisorption and cooperative binding mechanisms central to MOF host-guest chemistries, thereby yielding new optimized materials for carbon capture and energy storage. Applications of these quantum sensors in biology may include employing hyperpolarized 13CO2 molecules as in-vivo pH chemical sensors, or oxidative stress sensors ex-vivo.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发和演示在金属有机框架(MOF)分子组件的有机接头成分中实现量子灵敏度的方法。这项工作将通过产生模型来促进科学的进步,从而揭示MOF的合成参数如何确定其用作传感器的使用的量子相干性和其他特性。通过这种新发现的理解,研究人员将能够通过优化的量子传感器来设计MOF设计,将对MOF本身进行审问和表征的新型和强大的手段具有进一步的影响;由于MOF对于通用化学传感器和量子信息科学(QIS)的基础研究具有广泛的潜力,其性能相等或优于现有工具。除了通用用途之外,这些基于MOF的量子传感器将作为一种新的强大手段具有进一步的影响,以审问和表征MOF本身。由于MOF具有跨催化剂的变革性应用的广泛潜力,因此碳捕获,能源存储和前体生化感官以及其他领域都具有中毒,因此中毒以加快MOF的研究,该研究适用于社会的好处。该项目还将有助于扩大对科学教育和科学劳动力的参与。该团队将涉及本科研究人员在项目的各个方面,并通过将数据和设计调整为课程材料来扩展研究活动的教育影响。此外,该团队将通过一个心态项目,通过加州大学伯克利分校的化学学院的量子力学课程来支持社区大学转学学生(主要第一代),该团队将在旧金山湾地区的本科机构中进行宣传,并在每个案例中都在每个情况下,这些项目都在核能量子上绘制核能量子的范围。这种新颖的自下而上的方法利用了MOF在原子上保持原子精确的量子传感器的能力,并具有对传感器间距,晶体拓扑,富集和传感器间耦合的精细合成控制。此外,MOF的高内部表面积及其吸收来宾分子的能力将产生“散装式”量子传感器,其灵敏度和分辨率比传统方法更高。 MOF中的有机接头元素可以托管可将旋转极化转移到MOF结构本身或客体分子中的周围核旋转的可将旋转极化传递到周围的核自旋。 Pi Ajoy最近证明的超极化核自旋的长〜90S自旋相干寿命将使这些核能通过中继核磁共振(NMR)光谱数据充当高度敏感的磁力仪和量子化学传感器。该团队将结合MOF在一系列参数中的自下而上的合成,与材料项目共同开发的电子和振动现象的第一原理计算模型,以及实验光谱和其他表征数据,以确定合成参数对物理,化学和化学和量子的影响的影响,以最大程度地提高MOF的效率。 UC Berkeley最近开发的独特仪器将允许在各种温度和磁场上通过NMR和电子顺磁共振(EPR)进行连贯测量。该项目还将研究2D MOF和插入化合物,以减轻风险,并更深入地了解影响连贯性和传感器性能的因素。该团队基于MOF的量子敏感性方法将在当前方法(例如NV中心)中引入范式的进步,这些方法依赖于在表面附近的电子旋转以进行感知的范式:高孔隙率和MOF的可调化学亲和力允许整个材料散装能够方便地执行传感器,而远离晶体方向的独立性将使传感器的独立性范围换档。通过原子精度将量子传感器置入3D并控制其拓扑,富集和传感器间耦合的能力,为量子传感的“设计师”平台开辟了途径。在MOF中使用核自旋过度溶质和与核自旋可实现的长相干时间将进一步帮助敏感性和敏感性解决变革性应用的目标。该团队预计这些传感器将允许确定MOF宿主 - 基因化学中心的物理吸附和合作结合机制,从而产生新的优化材料,以捕获碳和能量。这些量子传感器在生物学中的应用可能包括采用超极化13CO2分子作为体内pH化学传感器,或者氧化应激传感器ex-vivo。该奖项反映了NSF的法定任务,并已通过使用基金会的智力和更广泛的影响来审查Criteria,通过评估来诚实地通过评估来诚实地支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Ashok Ajoy其他文献
Title Orientation-independent room temperature optical 13 C hyperpolarization in powdered
标题 粉末中与方向无关的室温光学 13 C 超极化
- DOI:
- 发表时间:20182018
- 期刊:
- 影响因子:0
- 作者:Ashok Ajoy;Kristina S. Liu;R. Nazaryan;X. Lv;P. Zangara;B. Safvati;Guoqing Wang;Daniel Arnold;Grace Li;Arthur Lin;Priyanka Raghavan;E. Druga;S. Dhomkar;D. Pagliero;Jeffrey A. Reimer;Dieter Suter;C. Meriles;Alexander PinesAshok Ajoy;Kristina S. Liu;R. Nazaryan;X. Lv;P. Zangara;B. Safvati;Guoqing Wang;Daniel Arnold;Grace Li;Arthur Lin;Priyanka Raghavan;E. Druga;S. Dhomkar;D. Pagliero;Jeffrey A. Reimer;Dieter Suter;C. Meriles;Alexander Pines
- 通讯作者:Alexander PinesAlexander Pines
Room-temperature quantum sensing with photoexcited triplet electrons in organic crystals
有机晶体中光激发三重态电子的室温量子传感
- DOI:10.1063/5.018699710.1063/5.0186997
- 发表时间:20242024
- 期刊:
- 影响因子:4
- 作者:Harpreet Singh;Noella D'Souza;Keyuan Zhong;E. Druga;Julianne Oshiro;Brian Blankenship;Jeffrey A. Reimer;Jonathan D. Breeze;Ashok AjoyHarpreet Singh;Noella D'Souza;Keyuan Zhong;E. Druga;Julianne Oshiro;Brian Blankenship;Jeffrey A. Reimer;Jonathan D. Breeze;Ashok Ajoy
- 通讯作者:Ashok AjoyAshok Ajoy
共 2 条
- 1
Ashok Ajoy的其他基金
MRI: Track 1 Development of a Combined Optical and Magnetic Resonance Spectroscopy System
MRI:光学和磁共振组合光谱系统的轨道 1 开发
- 批准号:23205202320520
- 财政年份:2023
- 资助金额:$ 200万$ 200万
- 项目类别:Standard GrantStandard Grant
PFI-TT: Device for High-throughput Parallel Measurement in NMR Spectroscopy
PFI-TT:核磁共振波谱高通量并行测量设备
- 批准号:21410832141083
- 财政年份:2022
- 资助金额:$ 200万$ 200万
- 项目类别:Standard GrantStandard Grant
EAGER: ADAPT: Machine Learning for the Analysis of Novel Zero-field Nuclear Magnetic Resonance Spectroscopic Data
EAGER:ADAPT:用于分析新型零场核磁共振波谱数据的机器学习
- 批准号:22316342231634
- 财政年份:2022
- 资助金额:$ 200万$ 200万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
塔里木北缘库鲁克塔格地区志留—泥盆纪变质—变形作用及其构造意义
- 批准号:42372240
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
热液流体对白云岩孔隙的差异改造:以塔北南斜坡上震旦统奇格布拉克组为例
- 批准号:42272154
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
库鲁克塔格地区下寒武统西大山组黑色页岩的钼同位素特征及其对古海洋环境的指示意义
- 批准号:41903018
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
新疆库鲁克塔格地区古元古代深熔混合岩变质作用P-T-t轨迹及其对碰撞造山过程的约束
- 批准号:41762015
- 批准年份:2017
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
北阿尔金地区阿克塔什塔格杂岩的岩石组合、形成时代及相关构造-岩浆事件
- 批准号:41672186
- 批准年份:2016
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:23266282326628
- 财政年份:2023
- 资助金额:$ 200万$ 200万
- 项目类别:Continuing GrantContinuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:23267462326746
- 财政年份:2023
- 资助金额:$ 200万$ 200万
- 项目类别:Standard GrantStandard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:23268012326801
- 财政年份:2023
- 资助金额:$ 200万$ 200万
- 项目类别:Continuing GrantContinuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:23268402326840
- 财政年份:2023
- 资助金额:$ 200万$ 200万
- 项目类别:Standard GrantStandard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:23267582326758
- 财政年份:2023
- 资助金额:$ 200万$ 200万
- 项目类别:Continuing GrantContinuing Grant