Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
基本信息
- 批准号:2243775
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Global floods and extreme rainfall events have surged by more than 50% this decade and are now occurring at a rate four times higher than in 1980. However, the capability of physical models in predicting flood events remains limited across spatial scales, especially in intensively managed agricultural systems like the Midwestern U.S. The apparent disparity between observed seasonal patterns of extreme precipitation and high streamflow events presents a challenge when using precipitation alone to predict flood occurrence and severity. This project addresses a fundamental question in hydrologic science: how do watershed characteristics and in-land management practices regulate the precipitation-runoff relationship across agriculture-dominated watersheds? The modeling framework in this project will integrate the complex impacts of watershed characteristics, human land use, and management practices into hydrological prediction. An early warning system will be developed for projecting flood occurrence at a granular level in a managed system and will be shared for further evaluation of the flood forecasting performance and uncertainty assessment.The overarching goal of the research is to develop a data-driven, physics-informed early warning system to predict flood occurrence and support communities in agriculture-dominated watersheds across the Midwestern United States. This project will develop a graph-based transformer deep learning approach integrated with process-based hydro-ecological modeling to improve flood prediction accuracy and keep the interpretable structure. The results of the project will be tested, shared, and deployed as a real-time prediction tool on a web-based platform that integrates mapping capabilities, advanced visualizations, and mobile access. The early warning system will be accessible to multiple users, especially underrepresented communities, concerning the direct impacts of flooding on life and property and the indirect effects on food security, economy, and livelihood of the communities.This project is jointly funded by Hydrologic Sciences, the Established Program to Stimulate Competitive Research (EPSCoR), and the Directorate for Geosciences to support AI/ML advancement in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全球洪水和极端降雨事件在这十年中激增了 50% 以上,目前的发生率是 1980 年的四倍。然而,物理模型预测洪水事件的能力在整个空间尺度上仍然有限,特别是在集约管理的地区像美国中西部这样的农业系统,观测到的极端降水和高流量事件的季节性模式之间的明显差异,在仅使用降水来预测洪水发生和严重程度时提出了挑战。该项目解决了水文科学中的一个基本问题:流域特征和内陆管理实践如何调节农业主导流域的降水-径流关系?该项目的建模框架将把流域特征、人类土地利用和管理实践的复杂影响纳入水文预测。将开发一个预警系统,用于在管理系统中以粒度级别预测洪水发生,并将共享该系统以进一步评估洪水预报性能和不确定性评估。该研究的首要目标是开发一个数据驱动的物理系统- 知情的早期预警系统可预测洪水发生并为美国中西部以农业为主的流域社区提供支持。该项目将开发一种基于图的变压器深度学习方法,与基于过程的水文生态建模相结合,以提高洪水预测的准确性并保持可解释的结构。该项目的结果将被测试、共享,并作为实时预测工具部署在基于网络的平台上,该平台集成了地图功能、高级可视化和移动访问。该早期预警系统将向多个用户开放,特别是代表性不足的社区,了解洪水对生命和财产的直接影响以及对社区粮食安全、经济和生计的间接影响。该项目由水文科学、刺激竞争性研究的既定计划 (EPSCoR) 和地球科学理事会支持地球科学领域的 AI/ML 进步。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chaoqun Lu其他文献
Are We Getting Better in Using Nitrogen?: Variations in Nitrogen Use Efficiency of Two Cereal Crops Across the United States
我们在使用氮方面做得更好吗?:美国两种谷物作物氮利用效率的差异
- DOI:
10.1029/2019ef001155 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:0
- 作者:
Chaoqun Lu;Jien Zhang;P. Cao;J. Hatfield - 通讯作者:
J. Hatfield
Severe Long‐Lasting Drought Accelerated Carbon Depletion in the Mongolian Plateau
长期严重干旱加速蒙古高原碳消耗
- DOI:
10.1029/2018gl081418 - 发表时间:
2019-05-25 - 期刊:
- 影响因子:5.2
- 作者:
Chaoqun Lu;H. Tian;Jien Zhang;Zhenfei Yu;S. Pan;S. Dangal;Bowen Zhang;Jia Yang;N. Pederson;A. Hessl - 通讯作者:
A. Hessl
Inquiry-based science teaching in English Medium Instruction science secondary classrooms: teachers’ understanding and perceptions
英语媒介探究式科学教学中学科学课堂:教师的理解和认知
- DOI:
10.1080/09500782.2023.2221216 - 发表时间:
2023-06-08 - 期刊:
- 影响因子:1.9
- 作者:
Chaoqun Lu;W. So - 通讯作者:
W. So
Highly sensitive detection of lead ions and cadmium ions based on ZIF-8-NH2 enhanced by carbon nanotubes and bismuth film
基于碳纳米管和铋膜增强ZIF-8-NH2的铅离子和镉离子高灵敏检测
- DOI:
10.1016/j.jece.2023.109515 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:7.7
- 作者:
Xingguang Chen;Tingting Xie;Chaoqun Lu;Jiyang Chu;Wenzhe Li;Rui Lin;Dianhui Wu;Qianhui Gu - 通讯作者:
Qianhui Gu
Earlier leaf-flushing suppressed ecosystem productivity by draining soil water in the Mongolian Plateau
蒙古高原提前冲叶导致土壤水分流失,抑制了生态系统生产力
- DOI:
10.1016/j.agrformet.2017.11.035 - 发表时间:
2018-03-15 - 期刊:
- 影响因子:6.2
- 作者:
Zhen Yu;Chaoqun Lu;P. Cao;H. Tian;A. Hessl;N. Pederson - 通讯作者:
N. Pederson
Chaoqun Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chaoqun Lu', 18)}}的其他基金
CAREER: Understanding the dynamics and predictability of land-to-aquatic nitrogen loading under climate extremes by combining deep learning with process-based modeling
职业:通过将深度学习与基于过程的建模相结合,了解极端气候下陆地到水生氮负荷的动态和可预测性
- 批准号:
1945036 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
工业云环境下的制造服务协作机理与可靠性分析理论研究
- 批准号:51875030
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
基于多节点协作的高鲁棒性低度复杂的抗窃听技术研究
- 批准号:61501347
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
保障协同中继网络安全性的协作干扰与机会式传输技术研究
- 批准号:61401165
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保障中继网络安全性的低复杂度协作传输技术研究
- 批准号:61201207
- 批准年份:2012
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321104 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
- 批准号:
2336367 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant