Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries

合作研究:钠离子电池相变电陶瓷化学力学的机理理解

基本信息

  • 批准号:
    2325463
  • 负责人:
  • 金额:
    $ 32.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYSodium-ion chemistry provides a significant alternative to the current lithium-ion technology for rechargeable batteries with its foremost advantage of natural abundance, low cost, and much wider choices of material selection, therefore providing a critical strategy to reduce the risk of the low reserve of scarce elements in the US. However, compared to lithium reactions, sodium chemistry poses a considerable mechanical deformation to the electrodes and creates more stress and degradation that compromise battery performance. This project, supported by the Ceramics Program within the Division of Materials Research, seeks to create a fundamental understanding of battery degradation via a close integration of novel experiments, data analysis, and modeling approaches. Such knowledge is crucial to elucidating the aging mechanisms of sodium-based batteries, which synergistically contribute to the development of materials of enhanced reliability for the same applications. The multifaceted collaboration between Purdue and Virginia Tech provides unique training opportunities for developing workforce for STEM related careers, with particular relevance to meeting the demand of the clean energy industries, which is expected to grow significantly in the coming decades. The research also provides a platform to continue the recruitment and engagement of the underrepresented groups and to educate future scientists on convergent research skills and entrepreneurial training.TECHNICAL SUMMARYThe project aims to achieve a holistic understanding of chemomechanics in phase-changing electroceramic electrodes through mechanistic studies of defects-charge coupling at the lattice scale, phase-stress coupling in single particles, and statistics of the particle network in the composite electrodes of sodium-ion batteries. The research is based on the hypothesis that: (i) the breakdown of the local structural symmetry not only induces lattice distortion and stress gradient at the nanoscale but also impacts the charge distribution in the lattice, (ii) the stochastic nature of material defects is coupled with the phase inhomogeneity in the single particles that gives rise to a stress/strain profile largely deviated from the conventional core-shell pattern; and (iii) in composite electrodes, the charge heterogeneity, mechanical damage, and electrochemical activities co-evolve, resulting in a dynamic ionic/electronic network in the cell. Following the hypothesis, the project includes the following research tasks. (i) Quantify the defect characteristics and map the defects-charging-composition at the nanoscale using controlled synthesis, synchrotron analytical techniques, and computational modeling. (ii) Understand the phase-stress coupling in the single electroceramic particles using the designs of grain engineering and surface coating. (iii) Identify the characteristic metrics of particle network in composite electrodes using machine learning, understand the dynamic evolution of particle network under operating conditions, and interpret the impact of mechanical degradation on battery performance. Overall, the research spans the basic understanding from the lattice scale up to the composite electrode and lays a foundation of mechanistic understanding of chemomechanical degradation in energy storage materiaThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要地位化学化学为当前可充电电池的锂离子技术提供了重要的替代方法,其自然丰度,低成本和更广泛的材料选择选择的优势最重要,因此提供了一种关键策略,以减少美国稀缺元素稀缺元素的风险。但是,与锂反应相比,钠化学对电极构成了相当大的机械变形,并产生了更多的压力和降解,从而损害了电池的性能。该项目在材料研究部内的陶瓷计划的支持下,旨在通过紧密整合新型实验,数据分析和建模方法来建立对电池降解的基本理解。这种知识对于阐明基于钠的电池的老化机制至关重要,钠基电池有助于开发同一应用的可靠性材料的发展。普渡大学和弗吉尼亚理工学院之间的多方面合作为开发与STEM相关职业的劳动力提供了独特的培训机会,并且与满足清洁能源行业的需求特别相关,而清洁能源行业的需求将在未来几十年中显着增长。这项研究还提供了一个平台,以继续招募和参与不足的群体,并教育未来的科学家有关收敛的研究技能和企业家培训的培训。技术总结旨在通过改变型号的机械型和跨越型号的素养量表,以在阶段和范围内进行阶段,以逐步了解lattece,cou cou cou ytate con,con,cou y lattest con,con,cou y lattest con,con,cou cou cou y lattest con,cou y lattests con,该项目旨在实现对化学力学的整体理解。钠离子电池的复合电极中的粒子网络。该研究基于以下假设:(i)局部结构对称性的分解不仅引起纳米级的晶格失真和应力梯度,而且还会影响晶格中的电荷分布,(ii)材料缺陷的随机性质与单个粒子的相位构图相关,从而导致压力/型号的相位,从而产生了压力/构图,从而产生了压力/构图的范围。 (iii)在复合电极中,电荷异质性,机械损伤和电化学活动共同进化,导致细胞中的动态离子/电子网络。在假设之后,该项目包括以下研究任务。 (i)使用受控合成,同步加速器分析技术和计算建模量化纳米级的缺陷特征并绘制纳米级的缺陷 - 收费组合。 (ii)使用谷物工程和表面涂料的设计了解单电陶瓷颗粒中的相压耦合。 (iii)使用机器学习确定复合电极中粒子网络的特征指标,了解操作条件下粒子网络的动态演化,并解释机械退化对电池性能的影响。总体而言,这项研究涵盖了从晶格量表到复合电极的基本理解,并奠定了对储能材料中化学机械降解的机械理解的基础,这一奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kejie Zhao其他文献

A Survey on Cross-Chain Data Transfer
跨链数据传输调查
Computational modeling of coupled mechanical damage and electrochemistry in ternary oxide composite electrodes
三元氧化物复合电极机械损伤和电化学耦合的计算模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Jiaxiu Han;Nikhil Sharma;Kejie Zhao
  • 通讯作者:
    Kejie Zhao
The Consumption-Tracking Problem of Singular Dynamic Input-Output Models
  • DOI:
    10.1016/s1474-6670(17)50046-4
  • 发表时间:
    1992-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jiuxi Yan;Zhaolin Cheng;Kejie Zhao;Hongting Yin
  • 通讯作者:
    Hongting Yin

Kejie Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kejie Zhao', 18)}}的其他基金

Conference: Support for Future Faculty Symposium at 60th Society of Engineering Science (SES) Conference; Minneapolis, Minnesota; 8-11 October 2023
会议:支持第 60 届工程科学学会 (SES) 会议的未来教师研讨会;
  • 批准号:
    2322824
  • 财政年份:
    2023
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Standard Grant
Mechanics of Organic Mixed Ionic-Electronic Conductors (OMIECs)
有机混合离子电子导体 (OMIEC) 的力学
  • 批准号:
    2210158
  • 财政年份:
    2022
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Standard Grant
CAREER: Superelastic Organic Semiconductors (SOSs): A New Class of Molecular Crystals of Responsive Shape Memory
职业:超弹性有机半导体(SOS):一类新型响应形状记忆分子晶体
  • 批准号:
    1941323
  • 财政年份:
    2020
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemomechanical Degradation of Oxide Cathodes in Li-ion Batteries: Synchrotron Analysis, Environmental Measurements, and Data Mining
合作研究:锂离子电池中氧化物阴极的化学机械降解:同步加速器分析、环境测量和数据挖掘
  • 批准号:
    1832707
  • 财政年份:
    2018
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Standard Grant
Bridging Mechanics and Electrochemistry: Theories and Experiments on Battery Materials
桥接力学和电化学:电池材料的理论与实验
  • 批准号:
    1726392
  • 财政年份:
    2017
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Standard Grant
Surface Coating for High-Capacity Electrodes in Li-ion Batteries: in-situ TEM Characterization and First-Principles Modeling
锂离子电池高容量电极的表面涂层:原位 TEM 表征和第一原理建模
  • 批准号:
    1603866
  • 财政年份:
    2016
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Standard Grant

相似国自然基金

智能建造“人机协作”场景下高龄建筑工人胜任力的影响机理与增强方法研究
  • 批准号:
    72301131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用产铁载体放线菌与原位菌群协作浸出离子吸附型稀土矿中稀土元素及其机理研究
  • 批准号:
    32370121
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于认知视角的多模态信息对人机协作施工人因失误的早期干预机理研究
  • 批准号:
    72301018
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声誉管理、协作网络与数字时代部委机构撤并机理与动态演化研究
  • 批准号:
    72374124
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
混合工业云环境下制造服务跨域协作链演化机理与信任提升机制研究
  • 批准号:
    52375510
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: ORCC: Integrated mechanistic predictions of ecological and evolutionary responses to increasing aridity across the range of an iconic species
合作研究:ORCC:对标志性物种范围内日益干旱的生态和进化反应的综合机制预测
  • 批准号:
    2307792
  • 财政年份:
    2023
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanistic study of mesoporous carbon formation from food waste
合作研究:食物垃圾中介孔碳形成的机理研究
  • 批准号:
    2305251
  • 财政年份:
    2023
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanistic modeling of cell encapsulation
合作研究:细胞封装的机制建模
  • 批准号:
    2247001
  • 财政年份:
    2023
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanistic modeling of cell encapsulation
合作研究:细胞封装的机制建模
  • 批准号:
    2247000
  • 财政年份:
    2023
  • 资助金额:
    $ 32.61万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了