Hyperbolic Manifolds and Their Embedded Submanifolds

双曲流形及其嵌入子流形

基本信息

  • 批准号:
    2243188
  • 负责人:
  • 金额:
    $ 19.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This project will investigate hyperbolic manifolds of finite-volume by understanding the structure of their embedded sub-manifolds. The research combines aspects from multiple fields, including geometric topology, number theory, algebraic geometry, combinatorics, and dynamics. The project will also include participation in activities including mentoring and supporting students and early career mathematicians, participating in public lectures and outreach activities, and organizing events and workshops. This project includes specific research plans for undergraduate and graduate students. The research goals of this project are divided into three main directions. The first project is to continue working in effective virtual properties of 3-manifolds by constructing explicit covers. This project will focus on congruence covers of arithmetic hyperbolic 3-manifolds, where the PI will leverage the rich connection between their geometric and number theoretical properties. The second project is to study codimension-1 embedded sub-manifolds in higher dimensional hyperbolic manifolds. A particular focus of this project is the case of hyperbolic manifolds of dimension 4, to better understand the relationship between the geometry of hyperbolic 4-manifolds and other well-studied 4-manifold invariants. The third project involves the study of embedded surfaces in 3-manifolds and simple closed curves in surfaces through the representations of their fundamental groups. The project also includes broader impact activities aimed at broadening participation among students and junior researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过了解有限体积双曲流形嵌入子流形的结构来研究它们。该研究结合了多个领域的各个方面,包括几何拓扑、数论、代数几何、组合数学和动力学。该项目还将包括参与指导和支持学生和早期职业数学家、参加公开讲座和外展活动以及组织活动和研讨会等活动。该项目包括针对本科生和研究生的具体研究计划。本项目的研究目标分为三个主要方向。第一个项目是通过构造显式覆盖来继续研究 3 流形的有效虚拟属性。该项目将重点关注算术双曲 3 流形的同余覆盖,其中 PI 将利用其几何和数论属性之间的丰富联系。第二个项目是研究高维双曲流形中的 codimension-1 嵌入子流形。该项目的一个特别重点是 4 维双曲流形的情况,以更好地理解双曲 4 流形的几何形状与其他经过充分研究的 4 流形不变量之间的关系。第三个项目涉及通过基本群的表示来研究三流形中的嵌入曲面和曲面中的简单闭合曲线。 该项目还包括旨在扩大学生和初级研究人员参与的更广泛的影响活动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michelle Chu其他文献

Special subgroups of Bianchi groups
Bianchi群的特殊子群
Reflections on trisection genus
对三等分属的思考
  • DOI:
  • 发表时间:
    2018-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michelle Chu;Stephan Tillmann
  • 通讯作者:
    Stephan Tillmann
Totally geodesic hyperbolic 3-manifolds in hyperbolic link complements of tori in $S^4$
$S^4$ 中环面的双曲链接补集中的全测地线双曲 3-流形
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michelle Chu;A. Reid
  • 通讯作者:
    A. Reid
Embedding closed hyperbolic 3–manifolds in small volume hyperbolic 4–manifolds
将闭合双曲 3 流形嵌入
Allergic airway recall responses require IL-9 from resident memory CD4+ T cells
过敏性气道回忆反应需要来自常驻记忆 CD4 T 细胞的 IL-9
  • DOI:
    10.1126/sciimmunol.abg9296
  • 发表时间:
    2022-03-18
  • 期刊:
  • 影响因子:
    24.8
  • 作者:
    Benjamin J. Ulrich;R. Kharwadkar;Michelle Chu;Abigail Pajulas;C. Muralidharan;Byunghee Koh;Yongyao Fu;Hongyu Gao;Tristan A. Hayes;Hong;N. Goplen;Andrew S. Nelson;Yunlong Liu;A. Linnemann;M. Turner;P. Licona;R. Flavell;Jie Sun;M. Kaplan
  • 通讯作者:
    M. Kaplan

Michelle Chu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michelle Chu', 18)}}的其他基金

Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
  • 批准号:
    2203885
  • 财政年份:
    2022
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1803094
  • 财政年份:
    2018
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Fellowship Award

相似海外基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Standard Grant
Hyperbolic Manifolds and Their Embedded Submanifolds
双曲流形及其嵌入子流形
  • 批准号:
    2203885
  • 财政年份:
    2022
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Standard Grant
CAREER: Three-manifolds with finite volume, their geometry, representations, and complexity
职业:有限体积的三流形、它们的几何形状、表示形式和复杂性
  • 批准号:
    2142487
  • 财政年份:
    2022
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Continuing Grant
Geometric Analysis of Einstein Manifolds and Their Generalizations
爱因斯坦流形的几何分析及其推广
  • 批准号:
    2212818
  • 财政年份:
    2021
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Continuing Grant
CAREER: Locally Homogeneous Geometric Manifolds and Their Moduli Spaces
职业:局部齐次几何流形及其模空间
  • 批准号:
    1945493
  • 财政年份:
    2020
  • 资助金额:
    $ 19.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了