eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics

eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析

基本信息

  • 批准号:
    2325196
  • 负责人:
  • 金额:
    $ 21.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Migratory animals including many bird species travel a spectacular distance annually between their summer breeding ground and overwintering site to track the appearance of key resources and maximize reproductive success. However, these migratory cycles are potentially disrupted as the timing of these resources are impacted by global climate change. To address the above knowledge gap, the interdisciplinary team of principle investigators (PIs) comprising a mathematician, biologist, and data scientists will develop novel mathematical models such as stochastic dynamic programming and agent-based models to gain mechanistic understanding of how migratory animals determine their routes and timing in response to environmental cues, and how those can be affected by climate change. The project will promote the use of the eBird database, which is a grassroots effort enabling citizens to directly contribute bird observations data using a mobile app. The project is a collaboration between Ohio State University and Oklahoma State University and offers valuable educational, training, and outreach opportunities. In addition to training of PhD students, the PIs propose to establish a K-12 program with a daylong workshop to engage the public and raise awareness of bird conservational efforts and impacts of climate change, as well as a summer undergraduate research program targeting underrepresented groups (ROMUS program at Ohio State). At the professional level, the PIs will organize synergistic activities to facilitate exchanges between mathematicians and biologists. These include a confirmed week-long workshop at Banff International Research Station in October 2024, for over 100 virtual and in-person participants. This research will improve our understanding of the effects of climate change on migrating bird populations and inform future conservation and management of wildlife. A critical question for understanding ecological responses to global change and conserving biodiversity in a changing world, is whether migrating animals can adjust their migration routes and schedules to track key resources even as the phenology of these resources shifts with climate change. In the case of birds with seasonal migratory routes crossing hemispheres, past studies have detected asynchrony between spring vegetation green-up and their arrival at breeding areas. This raised the concern that migrating birds may be negatively impacted by climate change. This interdisciplinary team of mathematician, biologist and data scientists will address the above knowledge gap by developing stochastic dynamic programming (SDP) models and agent-based models (ABM) for migrating animal populations. First, the aim is to develop an SDP model with switching costs in a continuous-time framework, in the context of optimal migration problem. The PIs will formulate and analyze the resulting Bellman equations and address the theoretical challenge of connecting individual migration decision to emergent population patterning. In addition, the PIs will also use spatially explicit agent-based modeling in parallel with and to extend the proposed mathematical modeling. Finally, the PIS will leverage remote sensing data on spring green-up across the Western Hemisphere with population level migration data for bird species from eBird database, for parameter estimation and model result comparison.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
包括许多鸟类在内的迁徙动物每年都会在夏季繁殖地和越冬地之间长途跋涉,以追踪关键资源的出现并最大限度地提高繁殖成功率。然而,由于这些资源的时间受到全球气候变化的影响,这些迁徙周期可能会受到干扰。为了解决上述知识差距,由数学家、生物学家和数据科学家组成的跨学科首席研究员 (PI) 团队将开发新颖的数学模型,例如随机动态规划和基于代理的模型,以机械地了解迁徙动物如何决定其行为响应环境线索的路线和时间,以及这些如何受到气候变化的影响。该项目将推广 eBird 数据库的使用,这是一项草根工作,使公民能够使用移动应用程序直接贡献鸟类观测数据。该项目是俄亥俄州立大学和俄克拉荷马州立大学之间的合作项目,提供宝贵的教育、培训和推广机会。 除了培训博士生外,PI 还建议建立一个 K-12 项目,并举办为期一天的研讨会,以吸引公众参与并提高对鸟类保护工作和气候变化影响的认识,以及针对代表性不足群体的夏季本科生研究项目(俄亥俄州立大学的 ROMUS 项目)。在专业层面,PI将组织协同活动,促进数学家和生物学家之间的交流。其中包括 2024 年 10 月在班夫国际研究站为 100 多名虚拟和现场参与者举办的为期一周的研讨会。这项研究将增进我们对气候变化对候鸟种群影响的理解,并为未来野生动物的保护和管理提供信息。了解对全球变化的生态反应和在不断变化的世界中保护生物多样性的一个关键问题是,即使这些资源的物候随着气候变化而变化,迁徙动物是否可以调整其迁徙路线和时间表来追踪关键资源。对于季节性迁徙路线穿越半球的鸟类来说,过去的研究发现春季植被变绿和它们到达繁殖区之间存在异步性。这引起了人们的担忧,即候鸟可能会受到气候变化的负面影响。这个由数学家、生物学家和数据科学家组成的跨学科团队将通过开发用于迁徙动物种群的随机动态规划(SDP)模型和基于代理的模型(ABM)来解决上述知识差距。首先,目标是在最优迁移问题的背景下,在连续时间框架中开发具有切换成本的 SDP 模型。 PI 将制定和分析由此产生的贝尔曼方程,并解决将个人迁移决策与新兴人口模式联系起来的理论挑战。此外,PI 还将使用基于代理的空间显式建模,与所提出的数学模型并行并对其进行扩展。最后,PIS 将利用西半球春季绿化遥感数据以及 eBird 数据库中鸟类种群水平迁徙数据,进行参数估计和模型结果比较。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Zhang其他文献

Integrated Lateral SBD Temperature Sensor of a 4H-SiC VDMOS for Real-Time Temperature Monitoring
用于实时温度监控的 4H-SiC VDMOS 集成横向 SBD 温度传感器
  • DOI:
    10.1109/ted.2023.3278624
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hang Chen;Y. Zhang;Penglong He;Yuqiao Zhang;Shaohua Chen;Shiyan Li;M. Luo;Zehong Li;Song Bai;Bo Zhang
  • 通讯作者:
    Bo Zhang
Effects of maltodextrin and protein hydrolysate extracted from lotus seed peel powder on the fat substitution and lipid oxidation of lotus seed paste.
  • DOI:
    10.1016/j.fochx.2023.100967
  • 发表时间:
    2023-12-30
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Na Deng;Zhao Li;Hui Li;Yongjian Cai;Changzhu Li;Zhihong Xiao;Bo Zhang;Miao Liu;Fang Fang;Jianhui Wang
  • 通讯作者:
    Jianhui Wang
An innovative supervised longitudinal learning procedure of recurrent neural networks with temporal data augmentation: Insights from predicting fetal macrosomia and large-for-gestational age.
具有时间数据增强的循环神经网络的创新监督纵向学习程序:预测巨大胎儿和大于胎龄的见解。
In Vitro Is Modulated by Metallothionein 2 O 2 Factor 1 by Toxic Heavy Metals and H Activity of Metal-Responsive Transcription
体外受有毒重金属和金属响应转录的 H 活性的金属硫蛋白 2 O 2 因子 1 调节
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schaffner WalterGünes;M. Cramer;P. Faller;M. Vašák;Bo Zhang;O. Georgiev;M. Hagmann;Çağatay
  • 通讯作者:
    Çağatay
Preparation of PHB/PLLA/n-HA Composite Ultrafine Fibers via Electrospinning
静电纺丝法制备PHB/PLLA/n-HA复合超细纤维
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiang Du;L. Ren;Bo Zhang
  • 通讯作者:
    Bo Zhang

Bo Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Zhang', 18)}}的其他基金

Probing the Gas/Water Interface on Electrochemically-Generated Nanobubbles
探测电化学产生的纳米气泡的气/水界面
  • 批准号:
    2203609
  • 财政年份:
    2022
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Continuing Grant
Single-Molecule Imaging of the Electrode/Solution Interface
电极/溶液界面的单分子成像
  • 批准号:
    1904426
  • 财政年份:
    2019
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
Fluorescence-Enabled Electrochemical Microscopy
荧光电化学显微镜
  • 批准号:
    1505897
  • 财政年份:
    2015
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Continuing Grant
Exploration of HDL functional measurement as a novel biomarker for atherosclerosis
HDL功能测量作为动脉粥样硬化新型生物标志物的探索
  • 批准号:
    26460664
  • 财政年份:
    2014
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fluorescence-Enabled Electrochemical Detection and Imaging
荧光电化学检测和成像
  • 批准号:
    1212805
  • 财政年份:
    2012
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
  • 批准号:
    2325172
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Stochasticity in ovarian aging and biotechnologies for menopause delay
eMB:合作研究:卵巢衰老的随机性和延迟绝经的生物技术
  • 批准号:
    2325259
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
  • 批准号:
    2325171
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 21.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了