Unlocking organic polariton lasers with systematic molecular design

通过系统分子设计解锁有机偏振子激光器

基本信息

  • 批准号:
    2324344
  • 负责人:
  • 金额:
    $ 49.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical description:This research seeks to alter the properties of carbon-based organic semiconductors by combining light with materials engineering to open a route for new technological applications from tunable, low-power lasers to quantum information devices. Such carbon-based materials are ubiquitous in our daily lives. For instance, they enable plants to harvest light through photosynthesis. They feature in lightweight, flexible solar cells and light-emitting diode (LED) displays of top-end phones and televisions. Significant research goes into ways to control their properties – emitting light of the right color or transporting current efficiently – by changing their molecular structure. However, it is also possible to tune many materials properties with light, which is the key concept behind this project. When two mirrors are placed very close together with high precision, they act as tiny boxes, trapping light. If molecular semiconductors are placed between the mirrors, they can strongly interact with this light and begin to behave in entirely new surprising ways, forming new states called ‘polaritons’. These polaritons can emit light through new physical processes – potentially improving LED devices – and can undergo chemical reactions through new pathways. In this research, the principal investigator aims to exploit polaritons for a new generation of organic semiconductor lasers. Crucially, the project uses systematic control of the organic material to develop the first rational design rules to improve laser efficiency and performance. This approach lays the foundation for versatile, ‘plug-and-play’ organic lasers for communications, sensing, and new quantum technologies. Beyond these technological impacts, the project develops a portable mechanical demonstration of the physical concept behind polariton lasers. The research team aims to run the demonstration at local community outreach centers. Through hands-on exploration of how the collective behavior is affected by small structural changes, the demonstration engages the audience in the scientific method and in cross-cutting ideas of physics and chemistry like coherence. Technical description:Strong light-matter coupling to form exciton-polaritons holds immense promise for materials engineering. When applied to organic semiconductors, it offers a way to non-synthetically manipulate the molecular wavefunction and energy structure. This approach can alter fundamental behaviors like charge and energy transport, allowing functional properties of molecules to be rewritten at will. These effects range from redirecting chemical reactions to enabling the formation of Bose-Einstein condensates at room temperature. The latter have the potential to provide a general platform for low-threshold, electrically injected lasers. However, critical questions about the nature of polaritons hold back their rational application: How does the complex electronic structure of molecular materials impact the polariton energy landscape? What molecular levers can be identified to control the dynamical behavior of polaritons? How should devices be structured to maximize unique properties of polaritons? Focusing on polariton condensation, the research team uses a suite of ultrafast (fs to ps) time- and angle-resolved spectroscopies to reveal the molecular basis for the dynamical processes leading to condensation. These methods are combined with systematic optical microcavity variation, including control over critical properties of the semiconductor active layer and the overall device structure. By correlating polariton dynamics and condensation thresholds across these structures, the project aims to identify the crucial properties that govern polariton condensation and highlight the structural features that can be optimized. The ultimate goal of the research is to develop a roadmap to systematically reduce organic polariton condensation thresholds to achieve a platform for electrically injected lasing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:这项研究旨在通过将光与材料工程结合起来,为从可调,低功率激光器到量子信息设备的新技术应用打开一条新技术应用的途径来改变基于碳的有机半导体的性质。这种碳基材料在我们的日常生活中无处不在。例如,它们使植物能够通过光合作用收获光。它们具有轻巧的,柔性的太阳能电池和发光二极管(LED)的高端手机和电视显示。大量研究通过改变其分子结构来控制其性质的方法 - 散发出正确的颜色或有效运输的方法。但是,还可以将许多材料属性调整为光线,这是该项目的关键概念。当两个镜子以高精度放置在非常靠近的地方时,它们充当微小的盒子,捕获光。如果将分子半导体放置在镜子之间,则它们可以与此光强烈相互作用,并开始以全新的惊喜方式行事,形成新的状态,称为“ Polaritons”。这些偏振子可以通过新的物理过程(可能改善LED设备提高)发光,并可以通过新途径进行化学反应。在这项研究中,主要研究者旨在利用偏光子为新一代的有机半导体激光器。十足的是,该项目使用对有机材料的系统控制来制定第一个合理的设计规则,以提高激光效率和性能。这种方法为通信,传感和新的量子技术的多功能,“插件”有机激光奠定了基础。除了这些技术影响之外,该项目还开发了北极星激光器背后物理概念的便携式机械演示。研究小组的目标是在当地社区外展中心进行演示。通过动手探索集体行为如何受到微小的结构变化的影响,演示参与科学方法以及在物理和化学等诸如连贯性等物理和化学的思想中。技术描述:形成令人兴奋的巨星的强度强度耦合对材料工程具有巨大的希望。当应用于有机半导体时,它提供了一种方法,可以通过操纵分子波函数和能量结构。这种方法可以改变电荷和能量运输等基本行为,从而随意重写分子的功能性能。这些效果范围从重定向化学反应到使bose-Einstein在室温下凝结的形成。后者有潜力为低阈值,注射的激光提供一般平台。但是,关于极化子的性质的关键问题阻止了他们的合理应用:分子材料的复杂电子结构如何影响北极能量景观?可以识别哪些分子杠杆来控制极性子的动态行为?如何将设备结构化以最大化极性子的独特性能?研究团队专注于极化国家的凝结,使用了一套超快(FS至PS)时间和角度分辨光谱,以揭示导致凝结的动态过程的分子基础。这些方法与系统的光学微腔变化相结合,包括控制半导体活动层的临界特性和整体设备结构。通过将这些结构之间的极性动力学和冷凝阈值相关联,该项目旨在确定控制偏光量凝结的关键特性,并突出可以优化的结构特征。该研究的最终目的是开发一个路线图,以系统地减少有机偏光量冷凝阈值,以实现电气注射激光的平台。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估,并通过评估来诚实地支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Musser其他文献

Andrew Musser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

海洋缺氧对持久性有机污染物入海后降解行为的影响
  • 批准号:
    42377396
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
水相液滴化学在污染物分析、中间体监测、有机合成和污染物降解中的应用
  • 批准号:
    22376048
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
  • 批准号:
    22378279
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大气生物源有机硝酸酯的合成、定量和其在中国南方城市的成因研究
  • 批准号:
    22306059
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
真菌菌丝体对黄土高原草地土壤有机碳形成的作用机制
  • 批准号:
    42307440
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Manifacturing room-temperature polariton devices based on organic microcavity
基于有机微腔的室温极化激元器件的制造
  • 批准号:
    18H01900
  • 财政年份:
    2018
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Advanced materials for organic and hybrid polariton structures and devices
用于有机和混合极化子结构和器件的先进材料
  • 批准号:
    2106131
  • 财政年份:
    2018
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Studentship
Organic Polariton Laser with Low-dimensional TPCO Crystal Cavities
具有低维 TPCO 晶体腔的有机偏振子激光器
  • 批准号:
    15K13773
  • 财政年份:
    2015
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Fabrication of highly-doped organic crystalline materials and their polariton properties
高掺杂有机晶体材料的制备及其极化子特性
  • 批准号:
    23655183
  • 财政年份:
    2011
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Probing polariton condensation dynamics by multiquantum coherent spectroscopy in organic optical microcavities
通过有机光学微腔中的多量子相干光谱探测极化子凝聚动力学
  • 批准号:
    422383-2012
  • 财政年份:
    2011
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了