Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
基本信息
- 批准号:2323767
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The traditional trial-and-error approach for discovering new alloys has become increasingly expensive and time-consuming. This Designing Materials to Revolutionize and Engineer our Future (DMREF) project aims to leverage the power of artificial intelligence to enable the rapid and automated design of metallic alloys capable of withstanding both extreme stress and recoverable elastic deformation before permanent plastic deformation. The potential candidate alloys are complex concentrated alloys that are consisted of multiple high-concentration chemical elements. These alloys contain intricate fluctuations of both chemical elements and atomic positions within metallic crystals. The tremendous degrees of freedom in these fluctuations obstruct the efficient search for alloys with peak strength and peak elastic deformation limit. To overcome this barrier, the research team will employ artificial intelligence, computational modeling, and experimental tools to design, synthesize, and test ultrastrong and ultraelastic metallic alloys. A unique two-stage automated research workflow that transits from a data-driven approach to a physics-based approach will be constructed based on integrations of artificial intelligence techniques and physical models. Such integrations will enhance the understanding of deformation mechanisms in complex materials, enabling their use in structural and functional applications. This research team with diverse backgrounds will provide incorporative opportunities for undergraduate and graduate students to learn both materials science and artificial intelligence. Moreover, this project is committed to promoting diversity, equity, and inclusion in research and education. The research team will actively engage underrepresented minority students in research projects through education and outreach activities. The innovative strategies developed through this research, enabled by artificial intelligence, will have transformative impacts not only on metallic alloy design but also on the development of multifunctional materials and manufacturing processes.The research team is devoted to developing an artificial intelligence-enabled automated research workflow to revolutionize the design and manufacturing processes of ultrastrong and ultraelastic metallic alloys, which have extremely high yield strengths and elastic limits simultaneously. The general strategy is to manipulate and precisely tailor the local lattice distortions and chemical concentration fluctuations for impeding deformation defect motions in complex concentrated alloys. To achieve this goal, the automated research workflow will seamlessly integrate each step of material design aided by physical principles and artificial intelligence. Specifically, iterative design steps will involve atomistic simulations of deformation defects, depositing thin films of refractory metals-based complex concentrated metallic alloys using automated co-sputtering and in-situ characterization feedback, followed by comprehensive mechanical and structural characterizations using advanced nanomechanical measurements, spectroscopic techniques, and cutting-edge electron microscopy. By leveraging low-rank matrix/tensor factorization and autoencoder neural networks, key features of material structures and defect properties will be extracted from simulations, deposition parameters, mechanical behaviors, spectra, and chemical/structural characterization results. These key features facilitate the construction of a two-stage automated research workflow that transitions from a data-driven approach to a physics-based approach for designing and validating alloy candidates. This project aims to advance both the scientific understanding of deformation mechanisms under extreme loading conditions and manufacturing technologies of complex concentrated alloys and other chemically complex materials. The research team provides broad education opportunities for students with diverse backgrounds, including those in materials science, computer science, and mechanical engineering majors. Also, this project promotes collaboration and innovation through the archiving and sharing of codes and data on Materials Commons, a public repository and collaboration platform for materials studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发现新合金的传统试验方法变得越来越昂贵且耗时。这种设计材料彻底改变和设计我们的未来(DMREF)项目旨在利用人工智能的力量,以使能够在永久性塑性变形之前既可以承受极端压力和可恢复的弹性变形的金属合金的快速和自动化设计。潜在的候选合金是复杂的浓缩合金,由多个高浓度化学元件组成。这些合金包含金属晶体内化学元件和原子位置的复杂波动。这些波动中的巨大自由度阻碍了具有峰值强度和峰值弹性变形极限的合金的有效搜索。为了克服这一障碍,研究团队将采用人工智能,计算建模和实验工具来设计,合成和测试Ultrastrong和超级金属合金。从数据驱动的方法转换为基于物理学的方法的独特的两阶段自动化研究工作流程将基于人工智能技术和物理模型的整合来构建基于物理的方法。这种整合将增强对复杂材料中变形机制的理解,从而使它们在结构和功能应用中使用。这个背景不同的研究团队将为本科生和研究生提供材料科学和人工智能的融合机会。 此外,该项目致力于促进研究和教育中的多样性,公平性和包容性。研究小组将通过教育和外展活动积极地使代表性不足的少数民族学生参与研究项目。通过这项研究制定的创新策略,由人工智能启用,不仅将对金属合金设计产生变革性的影响,还将对多功能材料和制造过程的开发产生变革性的影响。研究团队致力于开发具有人工智能的自动化研究工作流程,以革新超级富裕和超级高高的高高分量,并彻底改变了超级型和超级高高。一般策略是操纵和精确调整局部晶格畸变和化学浓度波动,以阻止复杂浓缩合金的变形缺陷运动。为了实现这一目标,自动化的研究工作流将无缝整合材料设计的每个步骤,并在物理原理和人工智能的帮助下。具体而言,迭代设计步骤将涉及变形缺陷的原子模拟,将基于耐光金属的复杂浓缩金属合金的薄膜使用自动化的共同置换和原位表征反馈,然后使用全面的机械和结构性和结构性表征进行反馈,然后进行高级纳尼诺机械测量测量,高级测量,光谱,剪切,剪切,削减技术,削减技术和剪切电子,以及剪切的电子信息。通过利用低级别矩阵/张量分解和自动编码器神经网络,将从模拟,沉积参数,机械行为,光谱和化学/结构表征的结果中提取材料结构和缺陷特性的关键特征。这些关键功能有助于构建两阶段的自动化研究工作流程,该研究工作流程从数据驱动的方法转变为基于物理的方法,用于设计和验证合金候选物。该项目旨在提高对极端负荷条件下的变形机制的科学理解,以及复杂浓缩合金和其他化学复杂材料的制造技术。研究团队为具有不同背景的学生提供了广泛的教育机会,包括材料科学,计算机科学和机械工程专业的学生。此外,该项目通过归档和共享材料Commons(公共存储库和材料研究的协作平台)的归档和共享数据来促进合作和创新。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufeng Zheng其他文献
Comparison of Shape-based Analysis of Retinal Nerve Fiber Layer Data Obtained From OCT and GDx-VCC
从 OCT 和 GDx-VCC 获得的视网膜神经纤维层数据的基于形状的分析的比较
- DOI:
10.1097/ijg.0b013e31818c6f2b - 发表时间:
2009 - 期刊:
- 影响因子:2
- 作者:
P. Gunvant;Yufeng Zheng;E. Essock;R. Parikh;S. Prabakaran;J. G. Babu;Chandra G Shekar;Ravi Thomas - 通讯作者:
Ravi Thomas
Hypothesis on human eye perceiving optical spectrum rather than an image
人眼感知光谱而不是图像的假设
- DOI:
10.1117/12.2180827 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yufeng Zheng;H. Szu - 通讯作者:
H. Szu
Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires.
大面积高度定向、超长硅纳米线的合成。
- DOI:
10.1002/chin.200103229 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
W. Shi;H. Peng;Yufeng Zheng;Ning Wang;N. Shang;Zhen;Chun‐Sing Lee;Shui - 通讯作者:
Shui
技術者倫理教育―4 技術者倫理と企業倫理;技術者倫理教育―4 技術者倫理と企業倫理;Engineering Ethics: 4: Engineering Ethics and Business Ethics
工程道德:4:工程道德和商业道德
- DOI:
10.1541/ieejjournal.124.638 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Duyao Zhang;D. Qiu;M. Gibson;Yufeng Zheng;H. Fraser;D. StJohn;M. Easton - 通讯作者:
M. Easton
Author Correction: Additive manufacturing of ultrafine-grained high-strength titanium alloys
作者更正:超细晶高强钛合金的增材制造
- DOI:
10.1038/s41586-020-2291-z - 发表时间:
2020 - 期刊:
- 影响因子:64.8
- 作者:
Duyao Zhang;D. Qiu;M. Gibson;Yufeng Zheng;H. Fraser;D. StJohn;M. Easton - 通讯作者:
M. Easton
Yufeng Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufeng Zheng', 18)}}的其他基金
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
RII Track-4: NSF: Understanding the Nanoscale Incommensurate Modulated Structure in the Titanium Alloys
RII Track-4:NSF:了解钛合金中的纳米级不相称调制结构
- 批准号:
2229724 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Understanding the Role of Residual Stress Gradients on Plastic Strain Recovery in Nanocrystalline Thin Films
了解残余应力梯度对纳米晶薄膜塑性应变恢复的作用
- 批准号:
2417298 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CAREER: Understanding the Role of Nanoprecipitates in Advanced Metastable Titanium Alloys
职业:了解纳米沉淀物在先进亚稳钛合金中的作用
- 批准号:
2346524 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
CAREER: Understanding the Role of Nanoprecipitates in Advanced Metastable Titanium Alloys
职业:了解纳米沉淀物在先进亚稳钛合金中的作用
- 批准号:
2145844 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant