DMREF: Magneto-electro-optically coupled hybrid metamaterial thin film platform for photonic integrated circuits

DMREF:用于光子集成电路的磁电光耦合混合超材料薄膜平台

基本信息

  • 批准号:
    2323752
  • 负责人:
  • 金额:
    $ 199.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description: Unlike electronic circuits, photonic integrated circuits (PICs) use photons (small, discrete packets of light), rather than electrons, to transmit and process information. While photons provide higher transmission speeds and information capacity, achieving directed signal transmission, optical isolation, and switching remain critical challenges with current weakly-nonlinear materials. Despite silicon providing an established platform for low-cost, high-volume manufacturing, integrating many dissimilar materials on top poses significant processing and materials compatibility challenges. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports research to develop a class of novel hybrid materials (consisting of two constituents at the nanoscale), which will ultimately form several key building blocks for universal, large-scale PICs. These new hybrid materials provide tailorable optical properties, well-coupled functionalities, easy integration at the device level, and compatibility with semiconductor manufacturing. The scope of the work provides the foundation for a PIC platform that can be manufactured at scale, actualizing the benefits of photon-based circuits, which include: higher speed, lower temperature sensitivity, large integration capacity, and lower costs and carbon footprint, compared to typical integrated circuit (IC) devices. These advances will provide vital new capabilities in telecommunications, healthcare, sensing, etc., to address critical needs in the Creating Helpful Incentives to Produce Semiconductors (CHIPS) and Science Act through highly efficient device concepts and manufacturing approaches. Furthermore, the research findings will be incorporated into student research training at both graduate and undergraduate levels and education modules for a co-developed course and summer research programs for high school teachers and students.Technical Description: The scientific goal of the DMREF project is to advance understanding of electro-optical and magneto-optical coupling effects in complex nanoscale hybrid metamaterials with a two-phase hybrid thin film platform to harness the coupling mechanisms between charges, spins, and photons. The technological goal is to demonstrate several key building blocks for future large-scale PICs, including highly efficient and integrated optical switches, nonreciprocal devices, and magneto-optic sensors for PICs, as a proof of concept for this new hetero-integration paradigm. Specifically, the project will develop a novel hybrid thin film platform with alloyed nanopillars in a dielectric (e.g., BaTiO3) matrix that simultaneously exhibits a magneto-optic effect, an electro-optic effect, and a plasmonic effect, potentially offering the versatility in achieving optical switching and one-way transmission enhanced by plasmonic effects. Echoing the Materials Genome Initiative’s call for “integrating experiment, computation, and theory,” the project creates an effective feedback loop platform by combining experimental efforts (hybrid materials growth, optical property characterization, and device integration and demonstration), theory and modeling (CALculation of PHAse Diagrams (CALPHAD) + phase field modeling (PFM) and mesoscale electromagnetic modeling), and expedited materials prediction and model properties estimation to accelerate the hybrid metamaterial design process. Major research tasks include: (1) to explore alloyed metallic phase designs for enhanced magneto-optical coupling in metal-oxide hybrid systems and measure on-chip coupling properties; (2) to implement strain engineering for enhanced electro-optical coupling in oxide-based hybrid systems and demonstrate on-chip modulation and device trimming; and (3) to characterize and integrate hybrid systems to form optical devices for potential optical isolation, switching and sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:与电子电路不同,光子集成电路(图片)使用照片(小,离散的光包)而不是电子来传输和处理信息。虽然照片提供了更高的传输速度和信息能力,但使用当前弱非线性材料实现定向信号传输,光学隔离和切换仍然是至关重要的挑战。尽管硅为低成本,大容量制造提供了一个既定的平台,但将许多不同的材料整合在顶级性能上,重大处理和材料兼容性挑战。这种设计材料彻底改变和设计我们的未来(DMREF)奖支持了开发一类新型混合材料(由纳米级的两个成分组成)的研究,最终将形成多个通用大型图片的关键构件。这些新的混合材料提供了可定制的光学性能,耦合良好的功能,易于在设备级别进行集成以及与半导体制造的兼容性。工作范围为PIC平台提供了基础,该PIC平台可以大规模制造,实现基于光子的电路的好处,其中包括:与典型的集成电路(IC)设备相比,较高的速度,较低的温度灵敏度,较低的集成能以及较低的成本和碳足迹。这些进步将在电信,医疗保健,感应等方面提供重要的新能力,以解决创造有用的激励措施,从而通过高效的设备概念和制造方法来创造有用的激励措施(CHIP)和Science ACT。此外,研究结果将被纳入研究生和本科级别的学生研究培训中,以及针对高中教师和学生共同开发课程和夏季研究计划的教育模块。技术描述:DMREF项目的科学目标是提高对电 - 光学和磁性耦合型的型号的理解,并促进与复杂的型号的型号型号的型号,并效应组合型型均匀型号。利用电荷,旋转和照片之间的耦合机制。技术目标是为未来的大规模图片展示几个关键的构建块,包括高效和集成的光学开关,非注册设备和图片的磁传感器,作为这种新的异性整合范式的概念证明。具体而言,该项目将开发出一种新型混合薄膜平台,并具有合金的纳米柱(例如,Batio3)矩阵,仅表现出磁光效应,电光效应和塑性效应,并有可能在实现光学开关和单向传输效果方面具有多功能性。该项目与材料基因组倡议呼吁“整合实验,计算和理论”呼吁,该项目通过结合实验努力(混合材料的增长,光学性能表征以及设备集成和演示),理论和建模(计算(Calphad) +相位图(Calphad) +相位模型(PFM)和Mepale Electermy propertity(PFM),来创建有效的反馈循环平台估计加速杂种超材料设计过程。主要的研究任务包括:(1)探索合金的金属相设计,以增强金属氧化物混合系统中的磁光耦合并测量芯片耦合特性; (2)在基于氧化物的混合动力系统中实施应变工程,以增强电流耦合,并展示片上调制和设备修剪; (3)要表征和集成混合系统以形成光学设备,以实现潜在的光学隔离,切换和敏感性。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响评估标准来通过评估来表现出珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haiyan Wang其他文献

A Nonparametric Lack-of-Fit Test of Constant Regression in the Presence of Heteroscedastic Variances
存在异方差的情况下常数回归的非参数失拟检验
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Gharaibeh;Mohammad Sahtout;Haiyan Wang;Suojin Wang
  • 通讯作者:
    Suojin Wang
The comprehension of relative clauses in Mandarin Children with suspected specific language impairment
疑似特定语言障碍儿童普通话关系从句的理解
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Haopeng Yu;Haiyan Wang;Xiaowei He
  • 通讯作者:
    Xiaowei He
Are 21st Century Imperialism and Authoritarianism Different from Those of the 20th Century? Reflecting on Emotional Geopolitics in Eurasia
21世纪的帝国主义和威权主义与20世纪有什么不同?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenneth Benoit;Kohei Watanabe;Haiyan Wang;Paul Nulty;Adam Obeng;Stefan ller;and Akitaka Matsuo;宇山 智彦
  • 通讯作者:
    宇山 智彦
In-situ growth of ultrathin MoS2 nanosheets on sponge-like carbon nanospheres for lithium-ion batteries
用于锂离子电池的海绵状碳纳米球上原位生长超薄 MoS2 纳米片
  • DOI:
    10.1007/s40843-017-9215-3
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Ling Chen;Hao Jiang;Yanjie Hu;Haiyan Wang;Chunzhong Li
  • 通讯作者:
    Chunzhong Li
Lacidipine inhibits endoplasmic reticulum stress and myocardial remodeling induced by pressure overload in rat heart.
拉西地平抑制大鼠心脏压力超负荷引起的内质网应激和心肌重塑。
  • DOI:
    10.1016/j.ejphar.2013.07.040
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yong Huai;Haiyan Wang;Lei Zhao;Lianyou Zhao;J. Pei
  • 通讯作者:
    J. Pei

Haiyan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haiyan Wang', 18)}}的其他基金

Novel Two Phase Vertically Aligned Nanocomposites Beyond Oxides
超越氧化物的新型两相垂直排列纳米复合材料
  • 批准号:
    2016453
  • 财政年份:
    2020
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
  • 批准号:
    1902644
  • 财政年份:
    2019
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Standard Grant
Novel phase change materials with tunable transition properties
具有可调转变特性的新型相变材料
  • 批准号:
    1809520
  • 财政年份:
    2018
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Standard Grant
ATD: An Integrated Framework of Network Theory, Data Mining and Partial Differential Equation for Early Detection of Epidemic Outbreaks
ATD:网络理论、数据挖掘和偏微分方程的集成框架,用于流行病爆发的早期检测
  • 批准号:
    1737861
  • 财政年份:
    2017
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
Materials Discovery through Novel Nanocomposite Design
通过新型纳米复合材料设计发现材料
  • 批准号:
    1643911
  • 财政年份:
    2016
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
From Atomic Scale Strain Probing to Smart 3D Interface Design
从原子尺度应变探测到智能 3D 界面设计
  • 批准号:
    1565822
  • 财政年份:
    2016
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
Materials Discovery through Novel Nanocomposite Design
通过新型纳米复合材料设计发现材料
  • 批准号:
    1401266
  • 财政年份:
    2014
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
CAREER: Novel Ceramic Nanocomposites with Smart Interface Design
职业:具有智能界面设计的新型陶瓷纳米复合材料
  • 批准号:
    0846504
  • 财政年份:
    2009
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
Materials World Network: Novel Strain Control in Thick Epitaxial Nancomposite Films
材料世界网络:厚外延纳米复合材料薄膜中的新型应变控制
  • 批准号:
    0709831
  • 财政年份:
    2007
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

高隧穿磁电阻和电致电阻的铁磁铁电复合隧道结计算研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高隧穿磁电阻和电致电阻的铁磁铁电复合隧道结计算研究
  • 批准号:
    12204517
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
介电级钛酸镁在钒钛磁铁矿直接还原过程中的优先生成诱导机制
  • 批准号:
    51674018
  • 批准年份:
    2016
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
"微波弧光效应"下异质界面与绝缘膜的演变机理及其对铁硅软磁铁芯电-磁性能的影响
  • 批准号:
    51674181
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于磁交换耦合软-硬磁铁氧体复合纳米纤维的可控制备及电磁特性
  • 批准号:
    51202091
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
  • 批准号:
    EP/Y036948/1
  • 财政年份:
    2024
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Research Grant
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
  • 批准号:
    EP/Y036565/1
  • 财政年份:
    2024
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Research Grant
Extreme deformations of magneto- and electro-active membranes: A framework to model instabilities due to large multi-physics loads in thin structures
磁活性膜和电活性膜的极端变形:模拟薄结构中大量多物理载荷引起的不稳定性的框架
  • 批准号:
    EP/V030833/1
  • 财政年份:
    2022
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Research Grant
Creation of tunneling electro-magneto-dielectric effect of nanogranular composite films
纳米颗粒复合薄膜的隧道电磁介电效应的产生
  • 批准号:
    21K18810
  • 财政年份:
    2021
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Advanced Multifunctional Electro-Opto-Magneto-Mechanical Analysis Platform
先进的多功能电光磁力分析平台
  • 批准号:
    LE200100032
  • 财政年份:
    2020
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了