DMREF: Magneto-electro-optically coupled hybrid metamaterial thin film platform for photonic integrated circuits

DMREF:用于光子集成电路的磁电光耦合混合超材料薄膜平台

基本信息

  • 批准号:
    2323752
  • 负责人:
  • 金额:
    $ 199.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description: Unlike electronic circuits, photonic integrated circuits (PICs) use photons (small, discrete packets of light), rather than electrons, to transmit and process information. While photons provide higher transmission speeds and information capacity, achieving directed signal transmission, optical isolation, and switching remain critical challenges with current weakly-nonlinear materials. Despite silicon providing an established platform for low-cost, high-volume manufacturing, integrating many dissimilar materials on top poses significant processing and materials compatibility challenges. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports research to develop a class of novel hybrid materials (consisting of two constituents at the nanoscale), which will ultimately form several key building blocks for universal, large-scale PICs. These new hybrid materials provide tailorable optical properties, well-coupled functionalities, easy integration at the device level, and compatibility with semiconductor manufacturing. The scope of the work provides the foundation for a PIC platform that can be manufactured at scale, actualizing the benefits of photon-based circuits, which include: higher speed, lower temperature sensitivity, large integration capacity, and lower costs and carbon footprint, compared to typical integrated circuit (IC) devices. These advances will provide vital new capabilities in telecommunications, healthcare, sensing, etc., to address critical needs in the Creating Helpful Incentives to Produce Semiconductors (CHIPS) and Science Act through highly efficient device concepts and manufacturing approaches. Furthermore, the research findings will be incorporated into student research training at both graduate and undergraduate levels and education modules for a co-developed course and summer research programs for high school teachers and students.Technical Description: The scientific goal of the DMREF project is to advance understanding of electro-optical and magneto-optical coupling effects in complex nanoscale hybrid metamaterials with a two-phase hybrid thin film platform to harness the coupling mechanisms between charges, spins, and photons. The technological goal is to demonstrate several key building blocks for future large-scale PICs, including highly efficient and integrated optical switches, nonreciprocal devices, and magneto-optic sensors for PICs, as a proof of concept for this new hetero-integration paradigm. Specifically, the project will develop a novel hybrid thin film platform with alloyed nanopillars in a dielectric (e.g., BaTiO3) matrix that simultaneously exhibits a magneto-optic effect, an electro-optic effect, and a plasmonic effect, potentially offering the versatility in achieving optical switching and one-way transmission enhanced by plasmonic effects. Echoing the Materials Genome Initiative’s call for “integrating experiment, computation, and theory,” the project creates an effective feedback loop platform by combining experimental efforts (hybrid materials growth, optical property characterization, and device integration and demonstration), theory and modeling (CALculation of PHAse Diagrams (CALPHAD) + phase field modeling (PFM) and mesoscale electromagnetic modeling), and expedited materials prediction and model properties estimation to accelerate the hybrid metamaterial design process. Major research tasks include: (1) to explore alloyed metallic phase designs for enhanced magneto-optical coupling in metal-oxide hybrid systems and measure on-chip coupling properties; (2) to implement strain engineering for enhanced electro-optical coupling in oxide-based hybrid systems and demonstrate on-chip modulation and device trimming; and (3) to characterize and integrate hybrid systems to form optical devices for potential optical isolation, switching and sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:与电子电路不同,光子集成电路(PIC)使用光子(小的、离散的光包)而不是电子来传输和处理信息,而光子提供更高的传输速度和信息容量,实现定向信号传输。尽管硅为低成本、大批量制造提供了成熟的平台,但在顶部集成许多不同的材料却带来了重大的加工和材料兼容性挑战。革新和设计未来的材料 (DMREF) 奖支持开发一类新型混合材料(由两种纳米级成分组成)的研究,该材料最终将形成通用、大规模 PIC 的几个关键构建模块。材料提供可定制的光学特性、良好耦合的功能、器件级的轻松集成以及与半导体制造的兼容性。工作范围为可大规模制造的 PIC 平台奠定了基础,实现了基于光子的优势。与典型的集成电路(IC)器件相比,这些进步包括:更高的速度、更低的温度敏感性、更大的集成容量以及更低的成本和碳足迹,这些进步将为电信、医疗保健、传感等领域提供重要的新功能。通过高效的设备概念和制造方法来满足《创造有用的半导体生产激励措施》(CHIPS)和《科学法案》中的关键需求。此外,研究成果将纳入研究生和本科生的学生研究培训以及教育模块中。共同开发课程和暑期课程高中教师和学生的研究项目。技术描述:DMREF 项目的科学目标是通过两相混合薄膜平台加深对复杂纳米级混合超材料中电光和磁光耦合效应的理解,以利用技术目标是展示未来大规模 PIC 的几个关键构建模块,包括高效集成光开关、不可逆器件和 PIC 磁光传感器。具体来说,该项目将开发一种新型混合薄膜平台,该平台在电介质(例如 BaTiO3)基质中具有合金纳米柱,同时表现出磁光效应,即电光效应。效应和等离子体效应,可能提供通过等离子体效应增强的光学切换和单向传输的多功能性,呼应了材料基因组倡议“整合实验,计算和理论”,该项目通过结合实验工作(混合材料生长、光学特性表征以及器件集成和演示)、理论和建模(PHAse 图计算 (CALPHAD) + 相场建模( PFM)和介观电磁建模),以及加速材料预测和模型特性估计,以加速混合超材料设计过程主要研究任务包括:(1)探索增强的合金金属相设计。金属氧化物混合系统中的磁光耦合并测量片上耦合特性;(2) 实施应变工程以增强氧化物混合系统中的电光耦合,并演示片上调制和器件微调;(3) )表征和集成混合系统,形成用于潜在光隔离、开关和传感的光学器件。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haiyan Wang其他文献

A case study of suspected heterophilic interference in serum CA19-9 in immunoassay: recommended method
免疫测定中血清CA19-9疑似异嗜性干扰案例研究:推荐方法
  • DOI:
    10.1016/j.hmedic.2024.100042
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yili Ping;Haiyan Wang;Minghui Li;Yachun Leng;Xiaofang Li;Juqin Sun;Zhengjun Hu
  • 通讯作者:
    Zhengjun Hu
Terahertz spectroscopic characteristic of metallic slit array
金属狭缝阵列的太赫兹光谱特性
Role of nanocone and nanohemisphere arrays in improving light trapping of thin-film solar cells
纳米锥和纳米半球阵列在改善薄膜太阳能电池光捕获方面的作用
  • DOI:
    10.1117/12.2506496
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Tao Zhang;F. Bian;X. Jia;Chenbo Wang;Jian Wang;Haiyan Wang;Zhaopeng Xu
  • 通讯作者:
    Zhaopeng Xu
Microstructural and electrical properties of Ce_0.9Gd_0.1O_1.95 thin-film electrolyte in solid-oxide fuel cells
固体氧化物燃料电池Ce_0.9Gd_0.1O_1.95薄膜电解质的微观结构和电学性能
  • DOI:
    10.1557/jmr.2010.72
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Sungmee Cho;Jongsik Yoon;Jung;Xinghang Zhang;A. Manthiram;Haiyan Wang
  • 通讯作者:
    Haiyan Wang
An inducible ESCRT-III inhibition tool to control HIV-1 budding
一种控制 HIV-1 出芽的诱导型 ESCRT-III 抑制工具
  • DOI:
    10.1101/2023.10.16.562494
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiyan Wang;B. Gallet;Christine Moriscot;Mylène Pezet;Christine Chatellard;J. Kleman;Heinrich Göttlinger;W. Weissenhorn;Cécile Boscheron
  • 通讯作者:
    Cécile Boscheron

Haiyan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haiyan Wang', 18)}}的其他基金

Novel Two Phase Vertically Aligned Nanocomposites Beyond Oxides
超越氧化物的新型两相垂直排列纳米复合材料
  • 批准号:
    2016453
  • 财政年份:
    2020
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
  • 批准号:
    1902644
  • 财政年份:
    2019
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Standard Grant
Novel phase change materials with tunable transition properties
具有可调转变特性的新型相变材料
  • 批准号:
    1809520
  • 财政年份:
    2018
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Standard Grant
ATD: An Integrated Framework of Network Theory, Data Mining and Partial Differential Equation for Early Detection of Epidemic Outbreaks
ATD:网络理论、数据挖掘和偏微分方程的集成框架,用于流行病爆发的早期检测
  • 批准号:
    1737861
  • 财政年份:
    2017
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
Materials Discovery through Novel Nanocomposite Design
通过新型纳米复合材料设计发现材料
  • 批准号:
    1643911
  • 财政年份:
    2016
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
From Atomic Scale Strain Probing to Smart 3D Interface Design
从原子尺度应变探测到智能 3D 界面设计
  • 批准号:
    1565822
  • 财政年份:
    2016
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
Materials Discovery through Novel Nanocomposite Design
通过新型纳米复合材料设计发现材料
  • 批准号:
    1401266
  • 财政年份:
    2014
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
CAREER: Novel Ceramic Nanocomposites with Smart Interface Design
职业:具有智能界面设计的新型陶瓷纳米复合材料
  • 批准号:
    0846504
  • 财政年份:
    2009
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant
Materials World Network: Novel Strain Control in Thick Epitaxial Nancomposite Films
材料世界网络:厚外延纳米复合材料薄膜中的新型应变控制
  • 批准号:
    0709831
  • 财政年份:
    2007
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Continuing Grant

相似海外基金

Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
  • 批准号:
    EP/Y036948/1
  • 财政年份:
    2024
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Research Grant
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
  • 批准号:
    EP/Y036565/1
  • 财政年份:
    2024
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Research Grant
Extreme deformations of magneto- and electro-active membranes: A framework to model instabilities due to large multi-physics loads in thin structures
磁活性膜和电活性膜的极端变形:模拟薄结构中大量多物理载荷引起的不稳定性的框架
  • 批准号:
    EP/V030833/1
  • 财政年份:
    2022
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Research Grant
Creation of tunneling electro-magneto-dielectric effect of nanogranular composite films
纳米颗粒复合薄膜的隧道电磁介电效应的产生
  • 批准号:
    21K18810
  • 财政年份:
    2021
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Advanced Multifunctional Electro-Opto-Magneto-Mechanical Analysis Platform
先进的多功能电光磁力分析平台
  • 批准号:
    LE200100032
  • 财政年份:
    2020
  • 资助金额:
    $ 199.99万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了