DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties

DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造

基本信息

  • 批准号:
    2323343
  • 负责人:
  • 金额:
    $ 33.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-01 至 2027-11-30
  • 项目状态:
    未结题

项目摘要

Micro-lattice and nano-lattice structures are an exciting class of materials with better strength-to-weight and stiffness-to-weight ratios than bulk solids. Many designs and additive-manufacturing approaches (i.e., 3D printing) have emerged recently for creating such materials, with the goal of fabricating commercially available products with optimized mechanical, thermal, acoustic, and electrical properties for biomedical, aerospace, and several other applications. This Designing Materials to Revolutionize and Engineer our Future (DMREF) grant will support development of novel approaches to design a new class of disordered lattice materials that are inspired by the special transport properties, e.g., heat transfer and diffusion, of the so-called “hyperuniform” structures. Hyperuniform materials may nominally be described as materials with minimal density variation as the length scale increases. They arise naturally in biological and chemical systems and can be designed through numerical methods. Numerous studies have demonstrated that such systems facilitate efficient transport behavior with minimal attenuation while also possessing nearly optimal effective elastic stiffness and material fracture suppression. The grant will also provide effective workforce development for a diverse group of undergraduates, PhD students, and postdoctoral researchers in the multidisciplinary areas of engineering, materials science, mathematics, and physics. It will contribute to the public understanding of materials research via publications, outreach, and internship programs for high-school students and teachers. Additionally, there will be an effort to develop entrepreneurship and trainees will be supported in pursuing commercialization of their ideas. The objective of this project is to engineer a new class of ultralight, manufacturable materials with jointly optimized mechanical (stiffness and strength) and transport (thermal, acoustic, and electrical) properties. To achieve this, the approach includes (1) characterization and understanding of the benefits of exploiting local uniformity and hyperuniformity; (2) measurement of mechanical and transport properties to create and understand the structure–process–property diagram for these materials, including the influence of heterogeneity and defects; and (3) development of new computational tools that allow optimization throughout the integrated theory, synthesis, and experiment loop of material development. The research activities will pursue three routes for property co-optimization: (1) adjustments to the initial configuration, including connectivity (theory); (2) material selection and control of microscale heterogeneity that is created by the additive-manufacturing process (synthesis); (3) designing time-varying signals that create specified spatial correlations when applied to structures (experiment). The approach will also include new modeling approaches, such as network analysis to create design heuristics and higher-order stochastic spatial-averaging techniques to account for microscale heterogeneity. These models will efficiently feed back into the design process by allowing the creation of random-network models that generate specific features that also remain manufacturable. The design cycle that forms the basis of the research aims draws heavily on building a shared Configuration Library and Code Library; these will be published for use by other research groups. This project is supported by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) of the Directorate for Engineering (ENG) and the Division of Mathematical Sciences (DMS) and the Division of Materials Research (DMR) of the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微晶格和纳米晶格结构是一类令人兴奋的材料类别,其强度到重量和刚度重量比的比率比散装固体更好。最近出现了许多设计和添加剂制造方法(即3D打印),用于创建此类材料,目的是制造具有优化的机械,热,声学和电气性能的商业产品,用于生物医学,航空航天和其他几种应用。这种设计材料彻底改变和设计我们的未来(DMREF)赠款将支持开发新的方法,以设计新的无序晶格材料,这些材料受到特殊运输属性的启发,例如热传递和扩散,即所谓的“超脱子”结构。随着长度尺度的增加,超均匀的材料可以名义上描述为具有最小密度变化的材料。它们自然出现在生物学和化学系统中,并且可以通过数值方法设计。大量研究表明,这种系统促进了有效的运输行为,同时还具有几乎最佳的有效弹性刚度和材料断裂抑制。该赠款还将为在工程,材料科学,数学和物理学的多学科领域的本科生,博士生和博士后研究人员提供有效的劳动力发展。它将通过针对高中生和老师的出版物,外展和实习计划对材料研究的公众了解。此外,将努力发展企业家精神,并将支持受训者追求其思想的商业化。该项目的目的是设计一种具有共同优化的机械(刚度和强度)以及传输(热,声学和电气)特性的新型超轻质,制造的材料。为此,该方法包括(1)表征和理解利用当地统一性和超均匀性的益处; (2)测量机械和运输特性,以创建和理解这些材料的结构 - 过程 - 专业图,包括异质性和缺陷的影响; (3)开发新的计算工具,这些工具允许在整个综合理论,综合和实验循环中进行优化。研究活动将采用三种途径进行财产相优式化:(1)对初始配置的调整,包括连接性(理论); (2)由加性制造过程(合成)创建的显微镜异质性的材料选择和控制; (3)设计时变化的信号,这些信号在应用于结构(实验)时会创建指定的空间相关性。该方法还将包括新的建模方法,例如网络分析,以创建设计启发式方法和高阶随机空间平均技术以说明微观异质性。这些模型将通过允许创建随机网络模型来有效地回到设计过程中,从而生成也可以保持制造的特定功能。构成研究基础的设计周期旨在建立共享的配置库和代码库。这些将由其他研究小组发布。该项目得到了工程局(ENG)的民用,机械和制造创新(CMMI)的支持,数学科学(DMS)和材料研究局(DMR)以及数学和物理科学局(MPS)的材料研究(DMR)(MPS)。 标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mason Porter其他文献

Mason Porter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mason Porter', 18)}}的其他基金

Collaborative Research: MIM: Using multilayer interaction networks to predict microbiome assembly and function
合作研究:MIM:使用多层交互网络来预测微生物组的组装和功能
  • 批准号:
    2124903
  • 财政年份:
    2021
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
ATD: Models of Spreading Dynamics in Multilayer Networks
ATD:多层网络中的传播动力学模型
  • 批准号:
    1922952
  • 财政年份:
    2019
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Community Structure In Multislice Networks
多切片网络中的社区结构
  • 批准号:
    EP/J001759/1
  • 财政年份:
    2012
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Research Grant

相似国自然基金

临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
  • 批准号:
    72302101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 33.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了