ERASE PFAS: Mechanistic Investigation of PFAS Degradation using Powder Activated Carbon and Persulfate at Ambient Temperature

ERASE PFAS:环境温度下使用粉末活性炭和过硫酸盐降解 PFAS 的机理研究

基本信息

项目摘要

The manufacturing, utilization, and disposal of perfluoroalkyl substances (PFAS) has caused widespread environmental contamination in the United States. PFAS are commonly referred to as “forever chemicals” due to their persistence, stability, and resistance to natural environmental degradation processes. In addition, PFAS tend to bioaccumulate in the human body, and mounting evidence suggests that several serious health outcomes are associated with PFAS exposure, including reduced vaccine response, increased cholesterol levels, and pregnancy complications. During the last two decades, PFAS have been increasingly detected in groundwater aquifers which serve as sources of drinking water for many communities throughout the United States. However, the treatment of PFAS contaminated groundwater can be expensive due to the extensive infrastructure and energy required to remove and destroy PFAS. The overarching goal of this project is to investigate the underlying science and engineering to advance the development and deployment of a promising low-energy and low-temperature treatment process that utilizes persulfate (PS), followed by activation with powdered activated carbon (PAC), to capture and destroy PFAS from contaminated groundwater. The successful completion of this project will benefit society through the generation of fundamental knowledge that will advance the utilization of persulfate and PAC as a cost-effective destruction technology for the treatment and remediation of PFAS contaminated groundwater. Additional benefits to society will be accomplished through education and training activities including the mentoring of one graduate student and one undergraduate student at the University of Michigan.Widespread use of PFAS in commercial products, manufacturing, and fire-fighting response has led to the contamination of soils and groundwater throughout the United States. Due to the high strength of the carbon-fluorine bond, most PFAS do not undergo natural attenuation reactions in environmental media such as biodegradation, photo-oxidation, photolysis, and hydrolysis. As a result, treatment of PFAS contaminated aquifers often requires pumping contaminated groundwater from the subsurface followed by above ground removal and disposal, which requires extensive infrastructure and/or substantial energy inputs. Few treatment technologies efficiently destroy PFAS in situ, especially at ambient temperatures. The goal of this project is to design, evaluate, and optimize a low energy and low temperature process for in situ PFAS capture and destruction from contaminated groundwater using persulfate (PS) and powdered activated carbon (PAC). The specific objectives of the research are to (1) evaluate the reaction kinetics for a homologous series of PFAS contaminants with a range of functional groups using the PS/PAC treatment process; (2) elucidate the underlying reaction mechanisms and the role of radical species in PFAS transformation and destruction during PS/PAC treatment; and (3) assess the effectiveness of the PS/PAC treatment to treat and remediate PFAS contaminated groundwater using flow-through column studies. The successful completion of this project has the potential for transformative impact through the generation of fundamental knowledge that will advance the utilization of persulfate and powdered activated carbon as an efficient and cost-effective destruction technology for in situ treatment of PFAS-impacted groundwater. To implement the educational and outreach goals of this project, the Principal Investigator (PI) plans to recruit and mentor students from underrepresented backgrounds to work on the proposed research. In addition, the PI will develop an interactive instructional module, “Understanding PFAS and Exposure Prevention,” for K-12 students to present in communities where PFAS has been detected in drinking water.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全氟烷基物质 (PFAS) 的制造、使用和处置在美国造成了广泛的环境污染,由于其持久性、稳定性和对自然环境降解过程的抵抗力,PFAS 通常被称为“永久化学品”。 PFAS 往往会在人体内生物累积,越来越多的证据表明,一些严重的健康后果与 PFAS 暴露有关,包括疫苗反应降低、胆固醇水平升高和妊娠并发症。在过去的二十年中,PFAS 的使用日益增多。然而,由于去除和销毁 PFAS 需要大量的基础设施和能源,因此,处理 PFAS 污染的地下水可能会非常昂贵。旨在研究基础科学和工程,以推进一种有前途的低能耗低温处理工艺的开发和部署,该工艺利用过硫酸盐(PS),然后用粉状活性炭(PAC)活化,以捕获和破坏该项目的成功完成将通过产生基础知识来造福社会,这些知识将促进过硫酸盐和 PAC 作为一种经济有效的销毁技术来处理和修复 PFAS 污染的地下水,为社会带来额外的好处。将通过教育和培训活动来完成,包括指导密歇根大学的一名研究生和一名本科生。PFAS 在商业产品、制造和消防响应中的广泛使用导致了由于碳氟键强度高,大多数 PFAS 在环境介质中不会发生生物降解、光氧化、光解和水解等自然衰减反应。被 PFAS 污染的含水层通常需要从地下抽出受污染的地下水,然后进行地上去除和处置,这需要大量的基础设施和/或大量的能源投入,很少有处理技术能够有效地原位破坏 PFAS,尤其是在环境中。该项目的目标是设计、评估和优化使用过硫酸盐 (PS) 和粉末活性炭 (PAC) 从受污染地下水中原位捕获和销毁 PFAS 的低能耗和低温工艺。研究目的是 (1) 使用 PS/PAC 处理工艺评估一系列具有一系列官能团的 PFAS 污染物的反应动力学;(2) 阐明潜在的反应机制以及自由基物质在 PFAS 中的作用PS/PAC 处理过程中的转化和破坏;(3) 使用流通柱研究评估 PS/PAC 处理和修复 PFAS 污染地下水的有效性。生成基础知识,推动过硫酸盐和粉状活性炭的利用,作为一种高效且经济高效的销毁技术,用于原位处理受 PFAS 影响的地下水。为了实现该项目的教育和推广目标,首席研究员 (PI) )计划招募和指导来自弱势背景的学生开展拟议的研究。此外,PI 将为 K-12 学生开发一个互动教学模块“了解 PFAS 和暴露预防”,以便在饮酒中检测到 PFAS 的社区进行展示。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Manz其他文献

Katherine Manz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

全氟壬氧基苯磺酸钠(OBS)在小鼠肝脏中蓄积并诱导肝毒性的分子机制
  • 批准号:
    22306102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去除水中新PFAS的高效选择性氟化-季铵COFs材料的构建及吸附机理研究
  • 批准号:
    22366033
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
典型全氟辛磺酸替代物在水稻中的分布特征及代谢转化机制研究
  • 批准号:
    22306198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于细胞表面展示的污水PFAS类污染降解及机理研究
  • 批准号:
    52300039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脉冲流辅助下限域催化蒸馏膜对印染废水中PFAS去除机理研究
  • 批准号:
    22306025
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase I: A Tunable Deep Ultraviolet (UV)-based Polyfluoroalkyl Substance (PFAS) Destruction Technology for Water Treatment
SBIR 第一阶段:用于水处理的可调谐深紫外线 (UV) 多氟烷基物质 (PFAS) 破坏技术
  • 批准号:
    2335229
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Enhancing global prediction of PFAS pollutant fate in sediment
加强对沉积物中 PFAS 污染物归宿的全球预测
  • 批准号:
    NE/Y003152/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Simply forever: Tackling PFAS complexity through mode of action assignment
永远简单:通过行动模式分配解决 PFAS 复杂性
  • 批准号:
    NE/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
  • 批准号:
    2338480
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Closing the data gap: Systematic monitoring of PFAS remediation in soil
缩小数据差距:系统监测土壤中的 PFAS 修复情况
  • 批准号:
    DE240100756
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了