CRII: CNS: RUI: Exploiting Robust Deep Learning Framework for Wireless Localization Systems in Adversarial IoT Environments
CRII:CNS:RUI:在对抗性物联网环境中利用强大的深度学习框架实现无线定位系统
基本信息
- 批准号:2321763
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the proliferation of wireless networks and mobile devices, wireless Internet of Things (IoT) applications (e.g., location-based services) have gained considerable attention. Indoor localization faces a number of challenges in the radio propagation environment, including the multipath effect, shadowing, fading, and delay distortion. To tackle the non-line-of-sight (NLOS) indoor environment, fingerprinting based wireless localization methods using deep neural networks (DNN) have been proposed. However, a data-driven only approach using DNN may perform poorly in adversarial IoT environments (e.g., wireless jamming). Specifically, DNN models are shown to be vulnerable to adversarial examples generated by introducing a subtle perturbation. Thus, the primary aim of the proposed research is to develop robust solutions for wireless localization in adversarial IoT environments, which fills in the gap between wireless localization accuracy and robustness. Particularly, we consider adversarial machine learning for wireless localization in IoT environments. The successful completion of this project will significantly improve the state-of-the-art of wireless localization and enable robust IoT applications. The project's educational plan includes developing a new graduate-level course on deep learning for wireless IoT systems and enhancing various core undergraduate and graduate-level courses. Also, the project strives to broaden participation from under-represented groups in research and will continue to greatly strengthen such efforts throughout the project years.The project research agenda is composed of two closely integrated research thrusts. In Thrust I, this project will use adversarial deep learning for indoor localization in a way that leverages adversarial training in the offline stage to improve the robustness of the deep network, thus alleviating the threat of the adversarial example attacks on wireless data. This project will consider two wireless localization tasks: adversarial examples for wireless localization in black-box attacks and unsupervised learning for adversarial examples detection. In Thrust II, this project will combine deep learning and Gaussian processes for uncertain location estimation, to improve robustness for wireless localization algorithms. Specifically, this project will exploit uncertainty location estimation with deep Gaussian process against both white-box and black-box attacks. Also, this project will model and analyze the fundamental limits and robustness of wireless localization. For all the proposed tasks in the two thrusts, this project will develop mathematical models and solution algorithms. The proposed algorithms will be implemented with wireless IoT devices/platforms (e.g., Wi-Fi, RFID, and LoRa), and validated with extensive experiments in representative indoor environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着无线网络和移动设备的扩散,无线物联网(IoT)应用程序(例如,基于位置的服务)引起了极大的关注。室内定位在无线电传播环境中面临许多挑战,包括多径效应,阴影,褪色和延迟失真。为了应对非视线(NLOS)室内环境,已经提出了基于指纹的无线定位方法使用深神经网络(DNN)。但是,仅使用DNN的数据驱动方法在对抗性物联网环境中的性能很差(例如,无线堵塞)。具体而言,通过引入微妙的扰动,DNN模型很容易受到产生的对抗示例的影响。因此,拟议的研究的主要目的是为对抗性物联网环境中的无线定位开发可靠的解决方案,该解决方案填补了无线定位精度和鲁棒性之间的空白。特别是,我们考虑在物联网环境中无线本地化的对抗机器学习。该项目的成功完成将显着改善无线本地化的最新面积,并启用强大的物联网应用程序。该项目的教育计划包括开发一门新的研究生课程,以实现无线物联网系统的深度学习,并增强各种核心本科和研究生级课程。此外,该项目旨在扩大代表性不足的研究小组的参与,并将在整个项目期间继续大大加强此类努力。项目研究议程由两个紧密综合的研究推力组成。在推力I中,该项目将使用对抗性深度学习进行室内定位,以一种在离线阶段利用对抗性训练来改善深网的鲁棒性的方式,从而减轻了对抗性示例对无线数据的攻击的威胁。该项目将考虑两个无线本地化任务:在黑盒攻击中无线本地化的对抗性示例和对抗性示例检测的无监督学习。在推力II中,该项目将结合深度学习和高斯过程,以实现不确定的位置估计,以提高无线定位算法的鲁棒性。具体而言,该项目将通过对白色框和黑盒攻击的深度高斯流程来利用不确定性位置估计。此外,该项目将建模和分析无线本地化的基本限制和鲁棒性。对于两个推力中的所有提议任务,该项目将开发数学模型和解决方案算法。 The proposed algorithms will be implemented with wireless IoT devices/platforms (e.g., Wi-Fi, RFID, and LoRa), and validated with extensive experiments in representative indoor environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Respiratory biofeedback using acoustic sensing with smartphones
- DOI:10.1016/j.smhl.2023.100387
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Azhar Chara;Tianya Zhao;Xuyu Wang;Shiwen Mao
- 通讯作者:Azhar Chara;Tianya Zhao;Xuyu Wang;Shiwen Mao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuyu Wang其他文献
Anthropogenic habitat loss accelerates the range expansion of a global invader
人为栖息地丧失加速了全球入侵者的范围扩张
- DOI:
10.1111/ddi.13359 - 发表时间:
2021-06 - 期刊:
- 影响因子:4.6
- 作者:
Xuyu Wang;Tao Yi;Wenhao Li;Chunxia Xu;Supen Wang;Yanping Wang;Yiming Li;Xuan Liu - 通讯作者:
Xuan Liu
RF Sensing for Internet of Things: When Machine Learning Meets Channel State Information
- DOI:
- 发表时间:
2018-07 - 期刊:
- 影响因子:0
- 作者:
Xuyu Wang - 通讯作者:
Xuyu Wang
Interfacial engineering of coupling tailored oxygen vacancies in CoxMn2O4 spinel hollow nanofiber to accelerate catalytic phenol removal
CoxMn2O4尖晶石空心纳米纤维中耦合定制氧空位的界面工程加速催化苯酚去除
- DOI:
10.1016/j.jhazmat.2021.127647 - 发表时间:
2021 - 期刊:
- 影响因子:13.6
- 作者:
Fu Yang;Yutong Lu;Xuexue Dong;Mengting Liu;Zheng Li;Wuxiang Zhang;Chengzhang Zhu;Xuyu Wang;Lulu Li;Chao Yu;Aihua Yuan - 通讯作者:
Aihua Yuan
Backdoor Attacks Against Deep Learning-Based Massive MIMO Localization
针对基于深度学习的大规模 MIMO 定位的后门攻击
- DOI:
10.1109/globecom54140.2023.10437534 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tianya Zhao;Xuyu Wang;Shiwen Mao - 通讯作者:
Shiwen Mao
Tailored oxygen defect coupling composition engineering CoxMn2O4 spinel hollow nanofiber enables improved Bisphenol A catalytic degradation
定制的氧缺陷耦合组合物工程 CoxMn2O4 尖晶石中空纳米纤维可改善双酚 A 催化降解
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:8.6
- 作者:
Yutong Lu;Wuxiang Zhang;Fu Yang;Xuexue Dong;Chengzhang Zhu;Xuyu Wang;Lulu Li;Chao Yu;Aihua Yuan - 通讯作者:
Aihua Yuan
Xuyu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuyu Wang', 18)}}的其他基金
Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
- 批准号:
2319343 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306791 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
- 批准号:
2317190 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CNS: RUI: Exploiting Robust Deep Learning Framework for Wireless Localization Systems in Adversarial IoT Environments
CRII:CNS:RUI:在对抗性物联网环境中利用强大的深度学习框架实现无线定位系统
- 批准号:
2105416 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
- 批准号:
2107164 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:82201491
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
- 批准号:82101506
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
- 批准号:32160834
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CNS: RUI: Developing Computational Skills in Non-Computing Professionals using an Informal Learning Approach
CRII:CNS:RUI:使用非正式学习方法培养非计算专业人员的计算技能
- 批准号:
2246111 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS CORE: Small: RUI: Hierarchical Deep Reinforcement Learning for Routing in Mobile Wireless Networks
合作研究:CNS CORE:小型:RUI:移动无线网络中路由的分层深度强化学习
- 批准号:
2154191 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS CORE: Small: RUI: Hierarchical Deep Reinforcement Learning for Routing in Mobile Wireless Networks
合作研究:CNS CORE:小型:RUI:移动无线网络中路由的分层深度强化学习
- 批准号:
2154190 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CNS: RUI: Exploiting Robust Deep Learning Framework for Wireless Localization Systems in Adversarial IoT Environments
CRII:CNS:RUI:在对抗性物联网环境中利用强大的深度学习框架实现无线定位系统
- 批准号:
2105416 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant