SBIR Phase I: Single-shot X-ray Phase-contrast Imaging Using Deep Learning Approaches
SBIR 第一阶段:使用深度学习方法的单次 X 射线相衬成像
基本信息
- 批准号:2321552
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact of this Small Business Innovation Research (SBIR) Phase I project relates to the benefits of next-generation X-ray imaging systems. The proposed single-shot platform overcomes the current barriers to widespread commercialization of Differential Phase Contrast (DPC) X-ray imaging. If successful, the single-shot technology will enable the development and application of next generation X-ray imagers for detecting liquids, small explosives, and other security threats for aviation and business applications. Reducing false alarm rates at airports will increase customer satisfaction, improve security, and reduce cost. DPC imaging could also substantially increase the detection of food pests, thereby reducing food waste and saving billions of dollars. In another market, non-destructive testing could significantly improve the inspection of additive manufacturing products, reducing manufacturing time through fewer iterations and creating high-quality products. Medical DPC imagers would provide MRI (Magnetic Resonance Imaging)-like resolution and diagnostics at an order of magnitude lower cost than current MRI.This Small Business Innovation Research Phase I project aims to develop a deep-learning approach to realize “single-shot” X-ray phase-contrast imaging. To commercialize the technology, the deep-learning algorithm needs to identify more complicated real-world objects effectively and accurately. Deep-learning methods require thousands to millions of training samples to make a reliable model. However, no imaging library for this unique technology currently exists. The research and development plan initially incorporates the standard slow scanning method of X-ray phase-contrast imaging to obtain DPC tri-signature computed tomography (CT) images. The tri-signature CT images provide the basis for precise material characterization (e.g., absorption coefficients, indices of refraction, and scatter characteristics). Once the materials have been characterized, they form the basis for creating millions of numerical representations of real-world objects. These objects subsequently form the core for effectively and efficiently training deep-learning models without further experimentation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项小型企业创新研究(SBIR)I阶段项目的更广泛影响与下一代X射线成像系统的好处有关。提出的单发平台克服了当前的差异差异相比(DPC)X射线成像的宽度商业化的障碍。如果成功的话,单发技术将使下一代X射线图像的开发和应用用于检测液体,小型爆炸物以及航空和业务应用的其他安全威胁。降低机场的误报率将提高客户满意度,提高安全性并降低成本。 DPC成像还可以大大增加对食物害虫的检测,从而减少食物浪费并节省数十亿美元。在另一个市场中,非破坏性测试可以显着改善对添加剂制造产品的检查,从而减少迭代次数并创建高质量产品的制造时间。医疗DPC Imagesrs将提供MRI(磁共振成像)类似于分辨率和诊断,其成本低于当前MRI。此小型企业创新研究阶段I项目旨在开发一种深度学习方法,以实现“单杆” X射线相对比成像。为了使技术商业化,深度学习算法需要有效,准确地识别更复杂的现实对象。深度学习方法需要数千到数百万培训样本才能制作出可靠的模型。但是,目前没有针对这种独特技术的成像库。研究与开发计划最初结合了X射线相位对比成像的标准慢扫描方法,以获得DPC三符号计算机断层扫描(CT)图像。三符号CT图像为精确材料表征提供了基础(例如,吸收系数,折射率和散射字符)。一旦材料进行了表征,它们就构成了创建数百万个现实世界对象的数值表示的基础。这些对象随后构成了无需进一步实验的有效和有效训练深度学习模型的核心。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响来审查标准,认为通过评估被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao-Te Cheng其他文献
Yao-Te Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
- 批准号:32303043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
- 批准号:32371612
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
- 批准号:52307091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: Subtractive-waveguide based Display for Augmented Reality Smart Glasses using Spatial-temporal Multiplexed Single-CMOS Panels
SBIR 第一阶段:使用时空复用单 CMOS 面板的基于减法波导的增强现实智能眼镜显示器
- 批准号:
2335927 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: Single-Pulse Radio Frequency Software Suite to Improve Advanced Driver Assistance Systems Safety
SBIR 第一阶段:单脉冲射频软件套件可提高高级驾驶员辅助系统的安全性
- 批准号:
2304554 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: Development of arrays to record dynamic interactions between single cells
SBIR 第一阶段:开发记录单细胞之间动态相互作用的阵列
- 批准号:
2229323 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR PHASE II, TOPIC 420: INTEGRATED PLATFORM AND CONSUMABLES FOR ROBUST, SENSITIVE AND HIGH-THROUGHPUT SINGLE-CELL PROTEOMICS
SBIR 第二阶段,主题 420:用于稳健、灵敏和高通量单细胞蛋白质组学的集成平台和耗材
- 批准号:
10948319 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
SBIR Phase I: Rapid Single-Use, Point-Of-Care, Disposable Lateral Flow Device for Detection Of Kennel Cough
SBIR 第一阶段:用于检测犬窝咳的快速一次性、护理点、一次性侧向流动装置
- 批准号:
2205111 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant