CAREER: Unified Reference-Free Early Detection of Hardware Trojans via Knowledge Graph Embeddings
职业:通过知识图嵌入对硬件木马进行统一的无参考早期检测
基本信息
- 批准号:2238976
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In recent years, cloud computing has risen to unparalleled societal importance, as it enables a broad range of applications, including healthcare services, social media, banking and electronic commerce. As a result, cloud services have access to the digital data of millions of users and become a lucrative target for criminals and cyberattacks. Sensitive data are stolen from cloud servers, incurring significant financial losses to those impacted. To address the shortcomings of current protection technologies in cloud computing, this project employs advanced cryptography and introduces new privacy protections that allow data to remain secure even when the cloud service is compromised. The project's novelties are in the judicious design of computers that can understand and process encrypted information such that, even if data are stolen or under attack, they will be incomprehensible to the attacker. The project's broader significance and importance is in addressing the urgent need of the cloud computing industry to mitigate the impact of cyberattacks and to protect the privacy of users, which is aligned with the mission of the National Science Foundation. The key observation in this project is that data are immune to leakage threats as long as they remain encrypted at all times, including during processing. Towards that end, the investigator employs a special form of encryption, called Fully Homomorphic Encryption, to protect general-purpose computation using diverse hardware platforms such as graphics processing units. Specifically, this project defines imperative models of computation that improve the programmability of encrypted data processing, without sacrificing execution performance. These models are complemented with real-life applications such as privacy-preserving machine learning and data mining that harness the power of encrypted computation. The results of this project are integrated with educational activities, including web-based learning environments and cybersecurity competitions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,云计算已上升到无与伦比的社会重要性,因为它支持广泛的应用,包括医疗服务、社交媒体、银行和电子商务。因此,云服务可以访问数百万用户的数字数据,并成为犯罪分子和网络攻击的有利可图的目标。云服务器中的敏感数据被盗,给受影响的人带来了重大的经济损失。为了解决当前云计算保护技术的缺点,该项目采用了先进的加密技术,并引入了新的隐私保护措施,即使云服务受到损害,数据也能保持安全。该项目的新颖之处在于计算机的明智设计,可以理解和处理加密信息,这样,即使数据被盗或受到攻击,攻击者也无法理解它们。该项目更广泛的意义和重要性在于满足云计算行业减轻网络攻击影响和保护用户隐私的迫切需求,这与美国国家科学基金会的使命是一致的。该项目的关键观察结果是,只要数据始终保持加密状态(包括在处理过程中),就不会受到泄漏威胁。为此,研究人员采用了一种特殊形式的加密,称为完全同态加密,来保护使用图形处理单元等不同硬件平台的通用计算。具体来说,该项目定义了命令式计算模型,可提高加密数据处理的可编程性,而不牺牲执行性能。这些模型与现实生活中的应用程序相辅相成,例如利用加密计算能力的隐私保护机器学习和数据挖掘。该项目的成果与教育活动相结合,包括基于网络的学习环境和网络安全竞赛。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inna Partin-Vaisband其他文献
Inna Partin-Vaisband的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inna Partin-Vaisband', 18)}}的其他基金
Collaborative Research: 2D Ambipolar Machine Learning & Logical Computing Systems
合作研究:2D 双极机器学习
- 批准号:
2154385 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: SMALL: End-to-End Global Routing with Reinforcement Learning in VLSI Systems
SHF:小型:VLSI 系统中采用强化学习的端到端全局路由
- 批准号:
2151854 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
多源不确定性数据驱动的深水集输系统一体化状态监测研究
- 批准号:62373277
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于边界控制的网络化抛物型偏微分系统一致性研究
- 批准号:62303163
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向公平性与准确性统一的推荐方法研究:基于模型偏差消解视角
- 批准号:72301239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向复杂场景的非线性多智能体系统一致性分层控制与优化
- 批准号:62303393
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多精度目标追踪的多模态统一模型
- 批准号:62302328
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Distributed Time-varying Coordination of Uncertain Nonlinear Multi-agent Systems: A Unified Model Reference Scheme
不确定非线性多智能体系统的分布式时变协调:统一模型参考方案
- 批准号:
2129949 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Distributed Time-varying Coordination of Uncertain Nonlinear Multi-agent Systems: A Unified Model Reference Scheme
不确定非线性多智能体系统的分布式时变协调:统一模型参考方案
- 批准号:
2129949 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant