Electrically Conductive 2D Metal-Organic Frameworks and Covalent Organic Frameworks Featuring Built-in Alternating pi-Donor/Acceptor Stacks with Efficient Charge Transport Capacity

导电二维金属有机框架和共价有机框架,具有内置交替 pi 供体/受体堆栈,具有高效的电荷传输能力

基本信息

  • 批准号:
    2321365
  • 负责人:
  • 金额:
    $ 57.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYSustaining the rapid advances of modern electronics and clean energy technologies requires continuous innovation and supply of easily accessible smart materials that can transport and store electrical charges in a programmable fashion. Owing to their synthetic accessibility, structural modularity, and functional tunability, metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) hold great potentials to serve as active components of next-generation electronics and energy-storage devices. Electrical conductivity—a product of charge carrier concentration and mobility—however, remains one of the most elusive traits of MOFs and COFs, prompting researchers to devise new design and synthetic strategies to engineer this much desired electronic property in these crystalline framework materials. With support from the Solid State and Materials Chemistry program in the Division of Materials Research and the Established Program to Stimulate Competitive Research (EPSCoR), Prof. Saha and his research group at Clemson University are developing and implementing a new design strategy to promote long-range out-of-plane charge transport in two-dimensional (2D) MOFs and COFs by incorporating cofacially stacked alternating electron-rich (pi-donor) and electron-deficient (pi-acceptor) arrays and then exploiting their efficient through-space charge delocalization capability in these solid-state materials, which are expected to generate promising intrinsic conductivity. This research project is not only producing novel electrically conductive 2D MOFs and COFs with unique structures and compositions, but also creating an innovative design strategy that can simultaneously facilitate in-plane and out-of-plane charge transport in two orthogonal directions through the layered networks and pi-donor/acceptor stacks, respectively, and thus boost the bulk conductivity of these emerging smart materials. This NSF-funded project is also enabling the PI to develop skilled workforce for future innovations by engaging and mentoring graduate, undergraduate, postdoctoral, and high-school students in cutting-edge materials research, inspire underrepresented minorities to pursue higher education in STEM, and raise scientific awareness of the society through various education and outreach activities at local schools, science museums, and public forums. TECHNICAL SUMMARYOwing to their diverse potentials to serve as active components of modern electronics and energy storage devices, electrically conductive metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have emerged as most coveted and explored functional materials. Yet, electrical conductivity, which is a function of charge carrier concentration and charge mobility, remains one of the most elusive features of these porous crystalline framework materials chiefly because they often lack efficient charge transport pathways. In two-dimensional (2D) MOFs, electronic conduction can occur within the planes through coordination and conjugated pi-bonds and/or across the planes through pi-stacked layers, whereas in 2D COFs, the latter represent the primary transport pathways. The large disparities between in-plane and out-of-plane charge transport in two orthogonal directions often render the conductivity of these materials highly anisotropic (i.e., direction dependent) and dampen their overall bulk conductivity. To address these issues and simultaneously promote both in- and out-of-plane charge transport such that it leads to higher bulk conductivity in 2D MOFs and COFs, in this project supported by NSF's Solid State and Materials Chemistry (SSMC) Program, Prof. Sourav Saha and his research group at Clemson University are pursuing novel design and synthetic strategies where they incorporate built-in alternating pi-donor/acceptor stacks inside 2D layered frameworks that can facilitate out-of-plane charge transport, bringing this typically less efficient pathway on par with through-bond conduction pathways. Understanding how pi-donor/acceptor stacks consisting of different complementary pi-donor and acceptor units embedded in 2D MOFs and COFs affect their out-of-plane charge transport capability and thus the overall bulk conductivity is creating a new design strategy for next-generation electrically conductive MOFs and COFs. This project is also enabling the PI to fulfill his longstanding commitment to develop skilled workforce capable of leading future innovations by guiding diverse group of researchers to execute complex multifaceted research, motivate minority students to pursue higher education in STEMs, and raise a scientifically aware society through various outreach and educational activities in local community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结现代电子和清洁能源技术的快速进步需要连续创新和供应易于访问的智能材料,这些材料可以以可编程方式运输和存储电荷。 Owing to their synthetic accessibility, structural modularity, and functional tunaability, metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) hold great potentials to serve as active components Electrical conductivity—a product of charge carrier concentration and mobility—however, remains one of the most elastic traits of MOFs and COFs, prompting researchers to devise new design and synthetic strategies to在这些晶体框架材料中设计了这种备受期待的电子特性。 With support from the Solid State and Materials Chemistry program in the Division of Materials Research and the Established Program to Stimulate Competitive Research (EPSCoR), Prof. Saha and his research group at Clemson University are developing and implementing a new design strategy to promote long-range out-of-plane charge transport in two-dimensional (2D) MOFs and COFs by incorporating cofacially stacked alternative electron-rich (pi-donor) and electron-deficiency (PI-Ceptor)阵列,然后在这些固态材料中利用其有效的通过空间电荷定位能力,这些固态材料有望产生有希望的内在电导率。该研究项目不仅生产具有独特结构和组成的新型导电2D MOF和COF,而且还创建了一种创新的设计策略,可以简单地在两个正交的网络和PI-DONOR/受体堆栈中促进平面内和平面电荷的运输,并为NSF-FUND提供了启动,并为未来的项目提供了PRE,以及PI的PRES,以及PI的PRES,以及PI的PRE,可以为您提供PRED PROP,并且可以为您提供PRENED PROP,PI是在台阶方向上的PROP,并为您提供了PRE的PRE,而PRENICK/for ns for ns ns pre and pre ins for n s ins pre neck and pre nes pre and pre nes pre and pre and pre and。通过参与和心理毕业生,本科,博士后和高中生从事尖端的材料研究,启发了代表性不足的少数群体,以通过当地学校,科学博物馆和公共论坛的各种教育和外展活动来促进STEM的高等教育,并提高对社会的科学意识。综上所述,其潜水员潜在的潜力是现代电子和储能设备,电子导电金属有机框架(MOFS)和价值有机框架(COF)(COFS)的潜在组成部分,这是令人垂涎的和大多数人的功能材料。然而,电导率是电荷载体浓度和电荷迁移率的函数,它仍然是这些多孔晶体框架材料的最弹性特征之一,主要是因为它们通常缺乏有效的电荷传输途径。在二维(2D)MOF中,可以通过配位和连接的PI键和/或在平面上通过PI堆叠层进行电子传导,而在2D COF中,后来代表主要的运输途径。在两个正交方向上的平面内和面外电荷转运之间的较大分布通常会导致这些材料的电导率高度各向异性(即方向依赖),并使它们的整体散装电导率达到了。解决这些问题并简单地促进平面内电荷运输,从而在2D MOF和COF中导致较高的散装电率,在NSF的固态和材料化学(SSMC)计划的支持下,Sourav Saha教授和他的研究小组在Clemson大学的研究小组中,将其内部构建新的设计和合成策略,以构成新的设计和合成策略,以使其内部融合了替代策略,可以促进平面外电荷运输,从而使这种效率较低的途径与整个键传导途径相当。了解由嵌入2D MOF和COF中的不同完整PI-DONOR和受体单元组成的PI-DONOR/受体堆栈如何影响其平面外电荷传输能力,因此总体批量的电导率正在为下一代电动导电MOF和COF创建新的设计策略。该项目还使PI能够履行他长期的承诺,以培养能够通过指导众多的研究人员来执行复杂的多方面研究,动机少数学生在STEM中购买高等教育的熟练劳动力,并通过当地社区中的各种范围来表现NSF的Infortional Internition deem deem deem the Indial of dee eym ofertial the Internitial the Inderial the Inderial the Indectial offorial of STEM,并培养科学意识的社会。更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rare Guest-Induced Electrical Conductivity of Zn-Porphyrin Metallacage Inclusion Complexes Featuring π-Donor/Acceptor/Donor Stacks
  • DOI:
    10.1021/acsami.3c15959
  • 发表时间:
    2023-12-18
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Benavides,Paola A.;Gordillo,Monica A.;Saha,Sourav
  • 通讯作者:
    Saha,Sourav
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sourav Saha其他文献

Artificial intelligence data-driven 3D model for AIS.
AIS 的人工智能数据驱动 3D 模型。
A Comparative Analysis of CNN-Based Pretrained Models for the Detection and Prediction of Monkeypox
基于 CNN 的猴痘检测和预测预训练模型的比较分析
  • DOI:
    10.48550/arxiv.2302.10277
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Saha;Trina Chakraborty;R. Sulaiman;Tithi Paul
  • 通讯作者:
    Tithi Paul
DNA Topoisomerases of Kinetoplastid Parasites: Brief Overview and Recent Perspectives.
动质体寄生虫的 DNA 拓扑异构酶:简要概述和最新观点。
ir_explain: a Python Library of Explainable IR Methods
ir_explain:可解释 IR 方法的 Python 库
  • DOI:
    10.48550/arxiv.2404.18546
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Saha;Harsh Agarwal;Swastik Mohanty;Mandar Mitra;Debapriyo Majumdar
  • 通讯作者:
    Debapriyo Majumdar
MAP123-EP: A mechanistic-based data-driven approach for numerical elastoplastic analysis
MAP123-EP:基于力学的数据驱动数值弹塑性分析方法

Sourav Saha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sourav Saha', 18)}}的其他基金

Charge Transporting Supramolecular pi-Donor/Acceptor Arrays Based on Redox-Active Metallacycles, Metal-Organic Cages, and Daisy-Chain Coordination Polymers
基于氧化还原活性金属环、金属有机笼和菊花链配位聚合物的电荷传输超分子π供体/受体阵列
  • 批准号:
    2203985
  • 财政年份:
    2022
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Continuing Grant
Guest-Induced Electrical Conductivity and Photovoltaic Activity of Metal-Organic Frameworks
金属有机框架的客体诱导导电性和光伏活性
  • 批准号:
    1809092
  • 财政年份:
    2018
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Continuing Grant
Reversible Anion and Ion-Pair Recognition under Electronic Control
电子控制下的可逆阴离子和离子对识别
  • 批准号:
    1660329
  • 财政年份:
    2016
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Continuing Grant
Reversible Anion and Ion-Pair Recognition under Electronic Control
电子控制下的可逆阴离子和离子对识别
  • 批准号:
    1507529
  • 财政年份:
    2015
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于导电纤维网络应变场精准调控的应变传感性能优化及其机制研究
  • 批准号:
    52302080
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间导电滑环滑动电接触磨损机制与预测研究
  • 批准号:
    52305180
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
表面等离激元增强的深紫外透明导电复合薄膜的光电性能调控及器件应用
  • 批准号:
    62364014
  • 批准年份:
    2023
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
空位缺陷调控的氮掺杂ZnO薄膜中受主形成机制与导电特性研究
  • 批准号:
    12304102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非对称酞菁铁过滤阳极诱导电子离域强化三价砷电氧化去除机制及调控
  • 批准号:
    52300105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Materials Nanotectonics: Designing Conductive Inorganic Porous Materials
材料纳米构造:设计导电无机多孔材料
  • 批准号:
    FL230100095
  • 财政年份:
    2024
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Australian Laureate Fellowships
Manufacturing conductive oxides as catalyst support for energy efficient production of hydrogen and ammonia
制造导电氧化物作为氢和氨节能生产的催化剂载体
  • 批准号:
    2904783
  • 财政年份:
    2024
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Studentship
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
  • 批准号:
    2332270
  • 财政年份:
    2024
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Standard Grant
Novel Hydroxide Ion Conductive Membranes for Advanced Ammonia Fuel Cell
用于先进氨燃料电池的新型氢氧化物离子导电膜
  • 批准号:
    DE230100407
  • 财政年份:
    2023
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of conductive ferromagnetic oxide nanosheets and pioneering of printable spintronics
导电铁磁氧化物纳米片的开发和可印刷自旋电子学的开拓
  • 批准号:
    22KJ3113
  • 财政年份:
    2023
  • 资助金额:
    $ 57.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了