CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing

职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料

基本信息

  • 批准号:
    2238914
  • 负责人:
  • 金额:
    $ 65.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

Non-Technical Description:Biopolymers are large, complex molecules produced by living organisms. For millennia, humans have used biopolymer-based materials to meet their everyday needs: wood to build homes and wool to weave clothes are two well-known examples. In the modern era, how can we continue to derive inspiration from nature to develop novel biopolymeric materials for humanity’s most pressing needs? Living cells are comprised of many thousands of different biopolymers that self-organize, giving rise to biological structure and activity. The goal of this project is to learn how biopolymers self-assemble in cells and then apply those insights for the development of new biomaterials. This CAREER project will focus on proteins, a large and important class of biopolymers. The principal investigator and his team will study biomolecular condensates, which are protein-rich spherical droplets that spontaneously assemble inside cells, and surfactant proteins that coat the surface of these biomolecular condensates and impart stability and function. The investigators will first identify and engineer surfactant proteins, then determine the physical and chemical principles by which surfactants interact with and influence biomolecular condensates. Based on these studies, the investigators will develop biomaterials to address an important problem in pharmaceutical synthesis. Many proteins are enzymes, whose function is to accelerate biochemical reactions. Enzyme-catalyzed reactions are a powerful alternative to traditional chemical catalysis to enable affordable, “green” pharmaceutical manufacturing. However, purification and formulation of enzymes are major challenges that impede advancement of the biocatalysis field. The investigators propose to address these challenges by developing new bio-inspired materials based on enzymatically active, surfactant-coated biomolecular condensates. Thus, this research seeks to advance fundamental understanding of how cells build materials, then will leverage this fundamental understanding to engineer biomaterials for pharmaceutical biocatalysis. This research program will be coupled with an education program, “Ethics for Biochemical Engineers.” The goal of this education program is to train students to consider how through their careers they can address major ethical challenges, including environmental sustainability and equitable global access to affordable medications.Technical Description:Cells compartmentalize their interiors to orchestrate their biochemical processes in space and time. Biomolecular condensates are cellular compartments formed via phase separation of proteins and other biopolymers. The cytoplasm is therefore reminiscent of an emulsion, comprising droplets of one phase dispersed in another phase. Emulsions used in consumer applications require surfactants to impart stability and function, so chemical surfactants are widely used and studied. However, researchers have devoted scant attention to intracellular protein surfactants and their contribution to the emulsion-like organization of the cell. To bridge that knowledge gap, this CAREER award aims to elucidate the “surfactome” – amphiphilic proteins that self-assemble at the surface of biomolecular condensates, stabilizing the condensates and regulating their biophysical properties and functions. The investigators propose to identify the physicochemical principles governing such intracellular surfactancy, quantify the effect of such surfactant proteins on biomolecular condensate coalescence, and conduct a bioinformatics survey to map the full scope of the surfactome. This fundamental research inspires a solution to a vexing problem in biomanufacturing. In the modern pharmaceutical industry, there is keen interest in replacing traditional catalyst materials with in vitro enzyme-catalyzed reactions to synthesize medicinal compounds more sustainably, safely, and affordably. However, enzyme purification and stability are critical challenges that have hindered pharmaceutical biocatalysis. Inspired by cells’ use of biomolecular condensates to compartmentalize and regulate enzymatic reactions, the investigators propose to develop enabling technologies for pharmaceutical biosynthesis. Specifically, the investigators will engineer immobilized enzyme materials comprised of crosslinked, surfactant-coated protein condensates. The rationale is that these biomaterials will simultaneously allow facile, chromatography-free enzyme purification via phase separation, and will optimally display enzymes at the condensate surface for maximal enzyme activity. Together, this research will elucidate basic principles of “surfactome” science and develop surface-active immobilized enzyme biomaterials for pharmaceutical biomanufacturing. The education component of this project aims to train students in ethics-based decision making in biochemical engineering. This ethics program will include a summer research program for underserved undergraduates, focusing on biomaterials and sustainability; ethics training for engineering graduate students; and a course module for senior undergraduates, featuring case studies in biochemical engineering ethics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:生物聚合物是由生物体产生的大型复杂分子,几千年来,人类一直使用基于生物聚合物的材料来满足他们的日常需求:木材用于建造房屋和羊毛用于编织衣服是两个众所周知的例子。现代,我们如何继续从大自然中汲取灵感,开发新型生物聚合物材料来满足人类最迫切的需求?活细胞由数千种不同的生物聚合物组成,这些生物聚合物可以自组织,产生生物结构和活性。该项目的目标是了解生物聚合物如何在细胞中自组装,然后将这些见解应用于新生物材料的开发。该项目将重点关注蛋白质,这是一类重要的生物聚合物。研究人员将首先研究生物分子凝聚物,它们是在细胞内自发组装的富含蛋白质的球形液滴,以及覆盖这些生物分子凝聚物表面并赋予稳定性和功能的表面活性剂蛋白。识别和设计表面活性剂蛋白质,然后确定表面活性剂与生物分子缩合物相互作用并影响生物分子缩合物的物理和化学原理,研究人员将开发生物材料来解决药物合成中的一个重要问题。酶催化反应是传统化学催化的有力替代方案,可实现经济实惠的“绿色”药物制造,然而,酶的纯化和配制是阻碍该技术进步的主要挑战。研究人员建议通过开发基于酶活性、表面活性剂涂层的生物分子缩合物的新型生物材料来应对这些挑战,因此,这项研究旨在增进对细胞如何构建材料的基本理解,然后利用这一基本理解来解决这些问题。该研究计划将与“生化工程师伦理”教育计划相结合,该教育计划的目标是培训学生考虑如何在他们的职业生涯中解决主要的伦理问题。技术描述:细胞在空间和时间上划分其内部以协调其生化过程。生物分子凝聚物是通过蛋白质和其他生物聚合物的相分离形成的细胞区室,因此细胞质不存在。乳液的形成,包含分散在另一相中的一相液滴用于消费应用的乳液需要表面活性剂来赋予稳定性和功能,因此化学表面活性剂被广泛使用和研究。然而,研究人员很少关注细胞内蛋白质表面活性剂及其对细胞乳液状组织的贡献,为了弥补这一知识差距,该职业奖旨在阐明“表面组”——在表面自组装的两亲性蛋白质。研究人员建议确定控制这种细胞内表面活性的物理化学原理,量化这种影响。表面活性剂蛋白对生物分子凝聚体的聚结,并进行生物信息学调查以绘制表面组的完整范围。这项基础研究激发了解决现代制药行业中一个棘手问题的方法。体外酶催化反应可以更可持续、更安全、更经济地合成药物化合物。然而,酶的纯化和稳定性是阻碍药物生物催化的关键挑战。通过细胞使用生物分子缩合物来分隔和调节酶反应,研究人员建议开发用于药物生物合成的支持技术,具体来说,研究人员将设计由交联的、表面活性剂包被的蛋白质缩合物组成的固定化酶材料。将允许通过相分离同时进行简便、免色谱的酶纯化,并将在冷凝液表面最佳地展示酶,以获得最大的酶活性。这项研究将共同​​阐明“表面组学”科学的基本原理,并开发用于药物生物制造的表面活性固定化酶生物材料。该项目的教育部分旨在培训学生在生物化学工程中基于伦理的决策。针对服务不足的本科生的暑期研究计划,重点关注工程研究生的生物材料和可持续性培训;以及针对高年级本科生的课程模块,以生物化学工程伦理学的案例研究为特色。通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Schuster其他文献

Widespread impact of DNA replication on mutational mechanisms in cancer
DNA 复制对癌症突变机制的广泛影响
  • DOI:
    10.1101/111302
  • 发表时间:
    2017-02-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Tomková;J. Tomek;S. Kriaučionis;Benjamin Schuster
  • 通讯作者:
    Benjamin Schuster
Dosage Sensitivity Shapes the Evolution of Copy-Number Varied Regions
剂量敏感性影响拷贝数变化区域的演变
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Benjamin Schuster;D. Conrad;A. Bateman
  • 通讯作者:
    A. Bateman
Chromatin organization is a major influence on regional mutation rates in human cancer cells
染色质组织对人类癌细胞的区域突变率有重大影响
  • DOI:
    10.1038/nature11273
  • 发表时间:
    2012-07-22
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Benjamin Schuster;Ben Lehner
  • 通讯作者:
    Ben Lehner
University of Birmingham Expression of Idh1(R132H) in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis
伯明翰大学 Idh1(R132H) 在小鼠室下区干细胞生态位中的表达概括了早期胶质瘤发生的特征
  • DOI:
    10.1007/s13311-017-0523-1
  • 发表时间:
    2017-03-20
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Chiara Bardella;Osama Al;D. Krell;Pijus Brazauskas;K. Al;M. Tomková;J. Adam;S. Serres;H. Lockstone;Luke Freeman;I. Pfeffer;N. Sibson;R. Goldin;Benjamin Schuster;Patrick J. Pollard;T. Soga;J. Mccullagh;C. Schofield;P. Mulholland;O. Ansorge;S. Kriaučionis;P. Ratcliffe;F. Szele;I. Tomlinson
  • 通讯作者:
    I. Tomlinson
Choosing the Right Reality: A Comparative Analysis of Tangibility in Immersive Trauma Simulations
选择正确的现实:沉浸式创伤模拟中有形性的比较分析

Benjamin Schuster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

杯芳烃基两亲分子和超两亲分子与蛋白质的聚集及对蛋白质的识别和活性调控
  • 批准号:
    21872120
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
基于表面活性剂与α-螺旋抗菌肽的抗生素设计及机理研究
  • 批准号:
    21802026
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
吸入大气细颗粒物与肺表面活性剂、细胞交互作用的力学机制与生物学研究
  • 批准号:
    91543125
  • 批准年份:
    2015
  • 资助金额:
    100.0 万元
  • 项目类别:
    重大研究计划
复合界面调控食品乳液中脂肪消化的机制研究
  • 批准号:
    31470096
  • 批准年份:
    2014
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
以大豆粕蛋白为原料可控制备蛋白质基表面活性剂机理研究
  • 批准号:
    21466006
  • 批准年份:
    2014
  • 资助金额:
    49.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Decoding the Code of Glycan-Collectin Interactions: Computational Engineering of Surfactant Proteins for Tailored Glycan Recognition
职业:解码聚糖-收集素相互作用的密码:用于定制聚糖识别的表面活性剂蛋白的计算工程
  • 批准号:
    2338401
  • 财政年份:
    2024
  • 资助金额:
    $ 65.38万
  • 项目类别:
    Continuing Grant
Exposure to PFAS mixture induces atherosclerosis via modulation of bile acid transport
接触 PFAS 混合物会通过调节胆汁酸转运诱导动脉粥样硬化
  • 批准号:
    10678129
  • 财政年份:
    2023
  • 资助金额:
    $ 65.38万
  • 项目类别:
Reactive aldehydes and alcohol misuse in lung infections
肺部感染中的活性醛和酒精滥用
  • 批准号:
    10581148
  • 财政年份:
    2023
  • 资助金额:
    $ 65.38万
  • 项目类别:
The role of surfactant protein-A genetic variant and sex in pathogenesis of neonatal respiratory syncytial virus infection
表面活性蛋白A基因变异和性别在新生儿呼吸道合胞病毒感染发病机制中的作用
  • 批准号:
    10723170
  • 财政年份:
    2023
  • 资助金额:
    $ 65.38万
  • 项目类别:
The role of transcription factor MEOX2 in lipofibroblast function during alveolarization
转录因子 MEOX2 在肺泡化过程中脂肪成纤维细胞功能中的作用
  • 批准号:
    10598463
  • 财政年份:
    2022
  • 资助金额:
    $ 65.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了