Collaborative Research: SaTC: EDU: A Comprehensive Training Program of AI for 5G and NextG Wireless Network Security
合作研究:SaTC:EDU:5G 和 NextG 无线网络安全人工智能综合培训项目
基本信息
- 批准号:2321271
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The emergence of 5G and next-generation (NextG) networks is transforming our lives into a new cyber era, featuring high connectivity and intensive data exchange. Such a highly connected world poses security and privacy challenges (e.g., how to safeguard sensitive data and ensure individual privacy). Traditional wireless network security designs may not adequately address these challenges, due to the complexity of handling a large amount of operational data. Recently, significant research efforts have been focused on adopting artificial intelligence (AI) techniques for 5G and NextG security because of their efficiency and capability of processing a variety of complex data to achieve intelligent functionalities. The future workforce needs comprehensive, coherent training in the intersection of 5G/NextG, security, and AI to gain a fundamental understanding of deploying AI techniques for wireless network security. This project aims to fill an essential educational gap between wireless network security and AI techniques by creating educational materials and training projects to train the future workforce in AI for 5G/NextG security. The project team will develop two major types of educational materials: (i) curriculum modules and (ii) project-based training. The lab-based curriculum modules for AI in 5G/NextG security will consist of three categories: physical layer, medium access control (MAC) and network layers, and network applications. In each module, state-of-the-art wireless equipment will be leveraged to create a real-world experiment-in-the-loop learning experience for students to observe and understand the advantages of AI for 5G/NextG security. Project-based training for students to will allow them to gain hands-on experience in developing and evaluating AI techniques to improve wireless network security. This project will enable various broader impacts, including undergraduate student training opportunities, openly disseminated training materials, and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
5G和下一代(NextG)网络的出现将我们的生活转变为新的网络时代,具有高连通性和密集的数据交流。如此高度联系的世界构成了安全性和隐私挑战(例如,如何保护敏感数据并确保个人隐私)。由于处理大量操作数据的复杂性,传统的无线网络安全设计可能无法充分解决这些挑战。最近,由于它们具有处理各种复杂数据以实现智能功能的效率和能力,因此重大研究工作集中在为5G和NextG安全采用人工智能(AI)技术。未来的劳动力需要在5G/NextG,Security和AI的交集中进行全面,连贯的培训,以获得对为无线网络安全部署AI技术的基本了解。该项目旨在通过创建教育材料和培训项目来培训AI中的未来劳动力,以填补无线网络安全和AI技术之间的基本教育差距,以获得5G/NEXTG安全。项目团队将开发两种主要类型的教育材料:(i)课程模块和(ii)基于项目的培训。 5G/NEXTG安全性AI的基于实验室的课程模块将包括三个类别:物理层,中访问控制(MAC)和网络层以及网络应用程序。在每个模块中,将利用最先进的无线设备来创建一个现实世界中的实验,以供学生观察和理解AI在5G/NEXTG安全性方面的优势。基于项目的学生培训将使他们能够获得开发和评估AI技术以提高无线网络安全性的动手经验。该项目将带来各种更广泛的影响,包括大学生培训机会,公开传播培训材料以及外展活动。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shangqing Zhao其他文献
BIBench: Benchmarking Data Analysis Knowledge of Large Language Models
BIBench:大语言模型的基准数据分析知识
- DOI:
10.48550/arxiv.2401.02982 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shu Liu;Shangqing Zhao;Chenghao Jia;Xinlin Zhuang;Zhaoguang Long;Man Lan - 通讯作者:
Man Lan
Self-supervised BGP-graph reasoning enhanced complex KBQA via SPARQL generation
自监督 BGP 图推理通过 SPARQL 生成增强复杂的 KBQA
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Feng Gao;Yan Yang;Peng Gao;Ming Gu;Shangqing Zhao;Yuefeng Chen;Hao Yuan;Man Lan;Aimin Zhou;Liang He - 通讯作者:
Liang He
Temporal Knowledge Graph Completion with Time-sensitive Relations in Hypercomplex Space
超复杂空间中时间敏感关系的时态知识图补全
- DOI:
10.48550/arxiv.2403.02355 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lianshang Cai;Xin Mao;Zhihong Wang;Shangqing Zhao;Yuhao Zhou;Changxu Wu;Man Lan - 通讯作者:
Man Lan
Shangqing Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shangqing Zhao', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
- 批准号:
2316720 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant