CAREER: Electronic and Optical Properties in Generalized Moire Systems from First Principles

职业:从第一原理看广义莫尔系统的电子和光学特性

基本信息

  • 批准号:
    2238328
  • 负责人:
  • 金额:
    $ 59.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis CAREER award supports theoretical and computational research, software development, and educational efforts on new classes of materials that can be created by combining a few layers (typically from two to four) of atomically thin materials.This family of layered materials has demonstrated great promise for use in electronic, optical, and quantum information applications. Their properties depend sensitively on the chemical composition of individual layers, the relative twist angle between each layer, and even the presence of nearby supporting materials. Hence, the vast combination of such layered systems that can be engineered with unique properties offers an untapped scientific and engineering opportunity.The PI will use a combination of new theoretical methods and large-scale atomistic simulation tools to chart this large phase space of layered systems. The methods that will be developed in this award will not only speed up simulations, but also give conceptual guidance on how to realize systems with desired quantum properties. The PI will study a few selected materials that can potentially host unconventional electronic and optical properties.The award will also synergistically involve community college students to broaden the participation of underrepresented minorities in science, technology, engineering, and math (STEM) fields. Finally, the research outcomes will also inform a proposed graduate-level course that introduces concepts of 2D and quantum materials to materials scientists and engineers. Such efforts will make the field of layered materials more accessible to a broader community, increase the pace of fundamental and applied materials discoveries, and translation of such discoveries to industry.TECHNICAL SUMMARYThis award supports theoretical and computational studies and educational efforts focused on vertically stacked, atomically thin layered materials. The award focuses on systems that display moiré patterns with a wavelength much larger than that of the crystal periodicity of the individual layers.Such systems received considerable interest with the discovery of superconductivity in twisted bilayer graphene in 2018. Indeed, there has been a growing interest in stacking insulating, semiconducting, ferroelectric, and magnetic monolayers, and engineering novel emergent excitations by carefully controlling the energy landscape at these longer wavelength scales.Utilizing large-scale first-principles computer calculations, the PI will develop methods to study such material combinations. The research activities are structured in three complementary objectives. First, the PI will develop methods to compute effective moiré potentials in complex, multilayer van-der-Waals structures using DFT and first-principles-parametrized force-field calculations. The outcome should allow the community to understand the electronic properties in a vast set of layered interfaces at low computational cost. Second, the award will support the development of first-principles approaches to compute excitons in complex van-der-Waals materials – which either include unusual materials combinations or a large number of layer stacking. These will be carried out by ab initio many-body perturbation theory calculations based on the GW and GW combined with Bethe-Salpeter equation (GW-BSE) approaches, together with new methods to incorporate the effect of the moiré potential without requiring large calculations on large supercells. The PI will systematically study the coherence and coupling of emergent excitonic states in such multilayer systems. Finally, this award will support investigations on how twisted 2D materials can realize unusual 1D physics, with applications in sensing and storage.In parallel, this award includes a multi-pronged educational component to reach out to students at different stages of their careers, with a particular emphasis on the local Hispanic/Latinx community which is underrepresented in STEM fields. These efforts involve, for instance, the mentoring of community college students through mini-internship opportunities, and designing and offering a graduate-level course on quantum and 2D materials, closing a common gap in the traditional educational curriculum of materials science and physics courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该职业奖支持新材料类别的理论和计算研究、软件开发和教育工作,这些材料可以通过组合几层(通常是两到四层)原子薄材料来创建。该系列的层状材料表现出了巨大的优势。它们的特性敏感地取决于各个层的化学成分、每层之间的相对扭转角,甚至附近支撑材料的存在,因此,这种层状结构的巨大组合。系统可以设计出具有独特性能的材料,这提供了一个尚未开发的科学和工程机会。PI将结合使用新的理论方法和大规模原子模拟工具来绘制分层系统的大相空间图,该方法将在此开发。该奖项不仅将加快模拟速度,还将就如何实现具有所需量子特性的系统提供概念指导。PI 将研究一些可能具有非常规电子和光学特性的选定材料。该奖项还将协同社区学院的学生参与。扩大最后,研究成果还将为拟议的研究生课程提供信息,该课程向材料科学家和工程师介绍二维和量子材料的概念。使层状材料领域更容易被更广泛的社区所接受,加快基础和应用材料发现的步伐,并将这些发现转化为工业。技术摘要该奖项支持专注于垂直堆叠、原子化的理论和计算研究以及教育工作该奖项重点关注显示波长远大于各层晶体周期性的莫尔图案的系统。随着 2018 年扭曲双层石墨烯超导性的发现,此类系统引起了极大的兴趣。事实上,人们对堆叠绝缘、半导体、铁电和磁性单层以及通过仔细控制这些较长波长尺度的能量景观来设计新颖的紧急激发越来越感兴趣。通过大规模第一原理计算机计算,PI 将开发研究此类材料组合的方法,研究活动分为三个互补的目标:首先,PI 将开发计算复杂多层范德华中的有效莫尔势的方法。使用 DFT 和第一原理参数化力场计算的瓦尔斯结构,其结果应该使社区能够以较低的计算成本了解大量分层界面中的电子特性。开发计算复杂范德瓦尔斯材料中激子的第一性原理方法,这些材料包括不寻常的材料组合或大量的层堆叠,这些将通过基于引力场的从头开始多体微扰理论计算来进行。 GW 与 Bethe-Salpeter 方程 (GW-BSE) 方法相结合,以及无需对大型超级电池进行大量计算即可纳入莫尔势效应的新方法。最后,该奖项将支持对扭曲的二维材料如何实现不寻常的一维物理及其在传感和存储方面的应用的研究。同时,该奖项还包括多方面的教育内容。接触处于职业生涯不同阶段的学生,特别是在 STEM 领域代表性不足的当地西班牙裔/拉丁裔社区。这些努力包括通过迷你实习来指导社区学院的学生。机会,设计并提供量子和二维材料的研究生水平课程,弥补了材料科学和物理课程传统教育课程中的共同差距。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Felipe Homrich da Jornada其他文献

Felipe Homrich da Jornada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Felipe Homrich da Jornada', 18)}}的其他基金

DMREF: Collaborative research: Data driven discovery of synthesis pathways and distinguishing electronic phenomena of 1D van der Waals bonded solids
DMREF:协作研究:数据驱动的合成途径发现和区分一维范德华键合固体的电子现象
  • 批准号:
    1922312
  • 财政年份:
    2019
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant

相似国自然基金

电子束调控红外微纳光学成像器件的设计方法研究
  • 批准号:
    62305024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热电子诱导的亚纳米等离激元腔及其光学谐波增强
  • 批准号:
    12304419
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维电子体系的面内光电效应、光学近场驱动和粘滞交流输运
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
孤对电子效应优化硫属卤化物红外非线性光学晶体的双折射率研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
定向外加电场效应调控自由基体系电子结构及非线性光学性质的机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Pigment Sensing Pulse Oximeter Technology for Mitigating Racial Bias in Oxygen Saturation Measurements
新型颜料感应脉搏血氧仪技术可减少血氧饱和度测量中的种族偏见
  • 批准号:
    10599746
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
Improving Individualized Assessments of Glaucoma Progression with Population-Based Electronic Health Record Data
利用基于人群的电子健康记录数据改进青光眼进展的个体化评估
  • 批准号:
    10428149
  • 财政年份:
    2022
  • 资助金额:
    $ 59.95万
  • 项目类别:
Improving Individualized Assessments of Glaucoma Progression with Population-Based Electronic Health Record Data
利用基于人群的电子健康记录数据改进青光眼进展的个体化评估
  • 批准号:
    10630915
  • 财政年份:
    2022
  • 资助金额:
    $ 59.95万
  • 项目类别:
CAREER: Modifying Electron-Electron Interactions to Control the Optical and Electronic Properties of Carbon Nanotubes
职业:改变电子-电子相互作用以控制碳纳米管的光学和电子特性
  • 批准号:
    1151369
  • 财政年份:
    2012
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Continuing Grant
CAREER: Electronic and Optical Properties of Nanostructures Built with Atomic Precision
职业:以原子精度构建的纳米结构的电子和光学特性
  • 批准号:
    0645451
  • 财政年份:
    2007
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了