Equipment: Acquisition of a laser direct-write photolithography system

设备: 购置激光直写光刻系统

基本信息

  • 批准号:
    2320641
  • 负责人:
  • 金额:
    $ 39.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Lithography is the most expensive and most critical step in the fabrication of semiconductor electronic and optical integrated circuits. The ability to reproduce millions of identical copies has advantages in manufacturing but in an R&D/educational setting we typically only need a handful of prototype copies. The current method of chip prototyping requires outsourced manufacturing of photomasks for each lithography step. The proposed laser lithography capability will eliminate the photomask step and enable researchers to directly print lithography patterns on a chip or wafer, thereby significantly accelerating research progress and reducing development cost. The difference in technique and corresponding advantages is analogous to mold replication vs 3D printing. Just like advances in electronics, mechanics and software have enabled high-quality 3D printing, recent advances in UV lasers, focusing optics and mechanical positioning accuracy have enabled direct-write photolithography. This project brings together a diverse group of researchers from Engineering and Science to make advances in several areas such as semiconductor materials, photonic and biotechnology chips, imaging science and advanced lithography process development. This tool is also ideal for incorporating hands-on experience for graduate and undergraduate students studying semiconductor manufacturing. This capability will become an integral training module for our semiconductor manufacturing workforce development initiatives and will augment our successful and on-going relationships with community colleges and minority-serving institutions in the region.The Raith PicoMaster 150 direct-write laser beam lithography (LBL) system will enable rapid prototyping of complex devices in hours instead of weeks with significantly lower cost by circumventing the need for the intermediate photomask step. With the ability to achieve feature sizes down to 300 nm, this equipment will help advance our current education, research, and industry partnerships in integrated photonics and electronics. This project brings together a diverse group of researchers from the Departments of Electro-Optics & Photonics, Electrical Engineering, Engineering Technology, Physics and Biology. Specific research activities that will immediately benefit from this tool include nano-patterned phase change materials (PCM), photonic integrated circuits (PIC), wide bandgap electronics, soft/wearable electronics, novel spectroscopic imaging, and lab-on-a-chip biomedical devices. Additionally, we will collaborate with Raith to explore resolution enhancement techniques such as self-aligned double patterning (SADP), which could enhance the optical resolution of the tool down to 100 nm. The proposed lithography capability will enable fast turnaround of designs made by students for immediate fabrication in our cleanroom. It will allow devices such as MOSFETs and photodetectors to be designed and fabricated during a single semester course. This will enhance the experiential learning of our graduate and undergraduate students, which was not previously possible due to the lengthy lead-times and costs associated with the photomask-based lithography process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光刻是半导体电子和光学集成电路制造中最昂贵且最关键的步骤。复制数百万个相同副本的能力在制造方面具有优势,但在研发/教育环境中,我们通常只需要少量原型副本。当前的芯片原型制作方法需要为每个光刻步骤外包光掩模制造。所提出的激光光刻功能将消除光掩模步骤,使研究人员能够直接在芯片或晶圆上印刷光刻图案,从而显着加快研究进度并降低开发成本。技术上的差异和相应的优势类似于模具复制与 3D 打印。就像电子、机械和软件的进步实现了高质量 3D 打印一样,紫外激光器、聚焦光学和机械定位精度的最新进展也实现了直写光刻技术。该项目汇集了来自工程和科学领域的多元化研究人员,致力于在半导体材料、光子和生物技术芯片、成像科学和先进光刻工艺开发等多个领域取得进展。该工具也非常适合为学习半导体制造的研究生和本科生提供实践经验。这种能力将成为我们半导体制造劳动力发展计划的一个不可或缺的培训模块,并将增强我们与该地区社区大学和少数族裔服务机构的成功和持续的关系。Raith PicoMaster 150 直写激光束光刻 (LBL)该系统将能够在数小时而不是数周内快速完成复杂器件的原型设计,并且无需中间光掩模步骤,从而显着降低成本。该设备能够实现小至 300 nm 的特征尺寸,将有助于推进我们当前在集成光子学和电子学方面的教育、研究和行业合作伙伴关系。该项目汇集了来自电光与光子学、电气工程、工程技术、物理和生物学系的多元化研究人员。将立即受益于该工具的具体研究活动包括纳米图案相变材料(PCM)、光子集成电路(PIC)、宽带隙电子学、软/可穿戴电子学、新型光谱成像和芯片实验室生物医学设备。此外,我们将与 Raith 合作探索分辨率增强技术,例如自对准双图案 (SADP),该技术可以将工具的光学分辨率提高至 100 nm。拟议的光刻功能将使学生设计的设计能够快速周转,以便在我们的洁净室中立即制造。它将允许在一个学期的课程中设计和制造 MOSFET 和光电探测器等器件。这将增强我们研究生和本科生的体验式学习,而这在以前是不可能的,因为与基于光掩模的光刻工艺相关的交货时间和成本都很长。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Sarangan其他文献

Optical trapping of chiral phase change nanomaterials
手性相变纳米材料的光捕获
High efficiency geometric-phase polarization fan-out grating on silicon
硅上高效几何相位偏振扇出光栅
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Chenhao Wan;David Lombardo;Andrew Sarangan;Qiwen Zhan
  • 通讯作者:
    Qiwen Zhan

Andrew Sarangan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Sarangan', 18)}}的其他基金

Collaborative Research: Cross-institutional Nano-technology Education and Workforce Training Project
合作研究:跨机构纳米技术教育和劳动力培训项目
  • 批准号:
    1138165
  • 财政年份:
    2012
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant

相似国自然基金

脉冲功率电子束获得GW级调谐太赫兹辐射的技术研究
  • 批准号:
    11875228
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
Nd/Y:Sc2SiO5晶体热效应补偿获得高稳定性双波长激光研究
  • 批准号:
    61475177
  • 批准年份:
    2014
  • 资助金额:
    84.0 万元
  • 项目类别:
    面上项目
基于光子晶体光纤飞秒技术的相干合成获得周期量级超短激光脉冲
  • 批准号:
    61008015
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
激光加速获得准单能质子的理论和实验研究
  • 批准号:
    10935002
  • 批准年份:
    2009
  • 资助金额:
    210.0 万元
  • 项目类别:
    重点项目
激光加速获得准单能质子束的探索研究
  • 批准号:
    10855001
  • 批准年份:
    2008
  • 资助金额:
    40.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Equipment: MRI Track 1: Acquisition of a Laser Ablation Time of Flight Inductively-Coupled Plasma Mass Spectrometer for UCSB Researchers and Educators
设备:MRI 轨道 1:为 UCSB 研究人员和教育工作者购买激光烧蚀飞行时间电感耦合等离子体质谱仪
  • 批准号:
    2320389
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Equipment Acquisition of a Laser Ablation System and Triple-quadrupole Inductively coupled Plasma Mass Spectrometer (LA ICP-MS)
激光烧蚀系统和三重四极杆电感耦合等离子体质谱仪 (LA ICP-MS) 的设备购置
  • 批准号:
    2223409
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Laser System for High Precision Spectroscopy and Trapping Neutral Holmium
设备: MRI:轨道 1 获取用于高精度光谱和捕获中性钬的激光系统
  • 批准号:
    2319917
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Equipment: Acquisition of an Ultrafast Laser for Research and Education at North Carolina Central University
设备:北卡罗来纳中央大学购买用于研究和教育的超快激光器
  • 批准号:
    2332407
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Laser Ablation System for ICP-MS to Expand a Broad Range of Analytical Activities and Research Training in the Earth Sciences
设备: MRI:轨道 1 采购用于 ICP-MS 的激光烧蚀系统,以扩大地球科学领域的广泛分析活动和研究培训
  • 批准号:
    2320703
  • 财政年份:
    2023
  • 资助金额:
    $ 39.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了