CAREER: Block Polyelectrolyte Complexes for Controlled Mixed Ionic-Electronic Conduction

职业:用于受控混合离子电子传导的嵌段聚电解质复合物

基本信息

  • 批准号:
    2237888
  • 负责人:
  • 金额:
    $ 65.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

This project is jointly funded by the DMR Polymers Program and the Established Program to Stimulate Competitive Research (EPSCoR). PART 1: NON-TECHNICAL SUMMARYThe use of electronic materials and devices at biological interfaces (i.e., bioelectronics) enables important applications in human health, such as for electrostimulation (e.g., to treat Parkinson’s or Alzheimer’s disease), biosensing, nerve/wound healing, and electrophysiological measurements. But, most common electronics in everyday devices are made of precious metal conductors, such as gold or platinum. These materials are not ideal for applications related to human health because they are too rigid and brittle. They also use electrons for communication instead of ions like biological systems do (e.g., neurons communicate through differences in ion concentration); this makes it difficult to “translate” electronic signals to ionic ones for stimulation, or vice versa for sensing. To address these problems, new materials are needed that are much softer, biocompatible, and enable the conduction of both electrons and ions. This research will introduce a new class of polymers that fit these criteria and have properties inspired from biology. These electron- and ion-conducting polymers will be synthesized, characterized and integrated in devices, to provide design rules to optimize the efficiency of electronic materials specifically made for bioelectronics applications. This research will therefore have an impact in both fundamental research on materials and applications in healthcare. It will also provide educational activities, hands-on demonstrations, and a mentoring program designed to broadly educate about the uses of polymeric materials and trigger and nurture interest in materials science and engineering. These educational, outreach, and research activities will actively engage graduate and undergraduate students to help develop their capabilities as interdisciplinary researchers, and thereby also increase the participation and retention of marginalized students.PART 2: TECHNICAL SUMMARYElectrically-conductive polymers that can also transport ions (i.e., organic mixed ionic-electronic conductors) could play a major role in the study and treatment of neurological disorders by acting as transducers between ionic and electronic signals. However, current methods to functionalize these materials for bioelectronic applications have been limited to blending with additives and to side-chain modification, which often decrease the electronic performance of the devices. The goal of the planned research is therefore to access organic mixed ionic-electronic conductors that maintain or improve their electronic performance upon functionalization with an electronically-insulating polymer. To achieve this goal, the complexation between neutral-anionic diblock copolymers and positively-charged conductive polymers (i.e., block polyelectrolyte complexes) will be leveraged to control the ordering of otherwise disordered mixed conductors, and ultimately tailor their properties for applications specific to bioelectronics. These block polyelectrolyte complexes will mimic key properties of biological systems while precisely controlling the relative contribution of ionic and electronic transport and ionic-electronic coupling. The research will focus on mimicking three biological properties: (1) specificity, (2) dynamic and adaptable properties, and (3) biodegradability. The results of this research will enable new functionalities for bioelectronic devices (e.g., ion-selective sensors, injectable and conductive tissue scaffolds, and transient devices), and contribute to the establishment of fundamental molecular design rules for high performance organic mixed ionic-electronic conductors. This research will also integrate educational activities for students and parents about the positive societal impact of functional plastics, in particular plastic electronics. A laboratory module will be developed to introduce junior undergraduate students to authentic research in organic electronics. The samples produced during this laboratory will be used in an outreach module on plastic electronics for K-12 students. This grant will also support the creation of a mentoring and support network for high school girls interested in pursuing a college degree in materials science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由 DMR 聚合物计划和刺激竞争性研究既定计划 (EPSCoR) 联合资助。第 1 部分:非技术摘要电子材料和设备在生物界面(即生物电子学)的使用可在人类健康、例如用于电刺激(例如,治疗帕金森病或阿尔茨海默病)、生物传感、神经/伤口愈合和电生理学但是,日常设备中最常见的电子设备是由贵金属导体制成的,例如金或铂,这些材料对于与人类健康相关的应用来说并不理想,因为它们过于坚硬和脆弱,它们也使用电子来进行通信。像生物系统那样的离子(例如,神经元通过离子浓度的差异进行通信);这使得将电子信号“转换”为离子信号以进行刺激变得困难,反之亦然以进行传感。柔和得多,这项研究将引入符合这些标准并具有受生物学启发的特性的新型聚合物,这些电子和离子传导聚合物将被合成、表征并集成到设备中。提供设计规则来优化专门为生物电子应用而设计的电子材料的效率,因此这项研究将对材料的基础研究和医疗保健应用产生影响。它还将提供教育活动、实践演示和指导。计划旨在广泛宣传聚合物材料的用途,激发和培养对材料科学与工程的兴趣。这些教育、推广和研究活动将积极吸引研究生和本科生,帮助培养他们作为跨学科研究人员的能力,并提高参与度和保留率。第 2 部分:技术摘要还可以传输离子的导电聚合物(即有机混合离子电子导体)可以通过充当神经系统疾病的研究和治疗发挥重要作用。然而,目前用于生物电子应用的这些材料的功能化方法仅限于与添加剂混合和侧链修饰,这通常会降低设备的电子性能。获得有机混合离子电子导体,在用电子绝缘聚合物功能化后保持或提高其电子性能。为了实现这一目标,中性阴离子二嵌段共聚物和带正电的导电聚合物之间发生络合。 (即嵌段聚电解质复合物)将用于控制无序混合导体的排序,并最终针对生物电子学的特定应用定制其特性。这些嵌段聚电解质复合物将模仿生物系统的关键特性,同时精确控制离子的相对贡献。该研究将集中于模拟三种生物特性:(1)特异性,(2)动态和适应性,以及(3)生物降解性。这项研究的结果将为生物电子器件(例如离子选择性传感器、可注射和导电组织支架以及瞬态器件)提供新功能,并有助于建立高性能有机混合离子电子导体的基本分子设计规则这项研究还将为学生和家长整合有关功能性塑料(特别是塑料电子学)的积极社会影响的教育活动,以向低年级本科生介绍有机电子学的真实研究。该实验室期间将用于 K-12 学生的塑料电子外展模块。这笔赠款还将支持为有兴趣攻读材料科学与工程大学学位的高中女生创建指导和支持网络。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laure Kayser其他文献

Nuclearity of nickel and mixed sodium-nickel complexes: dependence on the spacer in chelating pyridine-alcoholate ligands.
镍和混合钠镍配合物的核性:螯合吡啶醇配体中间隔基的依赖性。
  • DOI:
    10.1039/c0cc01425g
  • 发表时间:
    2010-08-24
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Laure Kayser;Roberto Pattacini;Guillaume Rogez;Pierre Braunstein
  • 通讯作者:
    Pierre Braunstein

Laure Kayser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

滴灌用劣质水泵前微压过滤器物理-生物堵塞特性及诱发机制研究
  • 批准号:
    52369013
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
透水铺装下垫面颗粒物累积堵塞全过程演化规律、冲刷迁移作用机制和雨水径流污染负荷评估方法
  • 批准号:
    52370092
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于准东高碱煤的流化床气化炉风帽堵塞物形成机制与预防策略研究
  • 批准号:
    22368045
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
纹层状页岩油CO₂吞吐沥青质表面与堵塞沉积机理及调控方法
  • 批准号:
    52304045
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
储气库多周期高速注采多孔介质盐析-运移-堵塞机制及烃-水-盐多相渗流理论研究
  • 批准号:
    42372180
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Open Access Block Award 2024 - British Geological Survey
2024 年开放获取区块奖 - 英国地质调查局
  • 批准号:
    EP/Z531406/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Bradford Teaching Hosp NHS Found Trust
2024 年开放访问区块奖 - 布拉德福德教学医院 NHS 赢得信任
  • 批准号:
    EP/Z53139X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - City, University of London
2024 年开放访问区块奖 - 伦敦大学城市学院
  • 批准号:
    EP/Z531443/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Institute for Fiscal Studies
2024 年开放获取区块奖 - 财政研究所
  • 批准号:
    EP/Z531534/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Institute of Development Studies
2024 年开放获取区块奖 - 发展研究所
  • 批准号:
    EP/Z531546/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了