Equipment: MRI: Track 1 Acquisition of Current Hardware to Enhance Computational Research on the ELSA High Performance Computing Cluster at The College of New Jersey
设备: MRI:第一轨道采购当前硬件,以增强新泽西学院 ELSA 高性能计算集群的计算研究
基本信息
- 批准号:2320244
- 负责人:
- 金额:$ 93.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In this project, The College of New Jersey (TCNJ) will acquire equipment to significantly upgrade and enhance our Electronic Laboratory for Science and Analysis (ELSA) High Performance Computing (HPC) cluster. As a primarily undergraduate institution, TCNJ is nationally recognized for the engagement of undergraduate students in research. School of Science faculty work closely with undergraduates in their laboratories throughout the academic year and during the summer in the Mentored Undergraduate Summer Experience (MUSE), with more than 75% of science graduates from TCNJ obtaining at least a semester of research experience. Over the course of this project, nearly 100 undergraduate student researchers per year will benefit by engaging in faculty-mentored research in labs from all School of Science departments (Physics, Chemistry, Biology, Mathematics and Statistics, and Computer Science) as well as in Civil Engineering. These research experiences are transformative for the students enabling their training in computing as well as facilitating their research in fields that include machine learning, astrophysics, biophysics, mathematical biology, and bioinformatics. Beyond the research laboratory, science faculty incorporate ELSA in their teaching, exposing 800-1000 undergraduates per year to advanced computing. TCNJ is also committed to creating a research-intensive environment for all STEM students by increasing success among underrepresented students and those with high financial need, including those that are transferring to TCNJ from local community colleges. The access to ELSA through collaboration with Open Science Grid is stimulating research programs and fostering alliances for collective impact.The TCNJ ELSA cluster is a heterogeneous HPC cluster housed in the TCNJ HPC Center. It is a state-of-the-art resource that will continue to meet the current and future computational needs of TCNJ’s science faculty and undergraduate students. The enhancements provided through this award will include the acquisition of high-end GPUs, fast, modern CPUs with fast interconnects and large memory capacities, and high speed network-based storage. The upgrades will directly benefit the research programs of 18 TCNJ faculty members, allowing them to continue to engage undergraduate students in transformative research experiences. The objective in designing a system with both GPU nodes and CPU nodes connected to high speed storage is to enable ELSA to run a diverse set of research workflows that reflect the varied and interdisciplinary computational research carried out by TCNJ faculty. The work of these faculty spans a range of interdisciplinary themes including (1) computational physics, (2) mathematical/computational biology, (3) genomics, (4) machine learning, and other areas. Some of the examples of the diverse scientific efforts that the cluster will support include molecular simulation studies of bacterial pilus biomechanics, assessing the habitability of circumbinary planets, using mathematical models to explore evolutionary tradeoffs in swimming performance across marine invertebrates, employing genomic approaches to characterize novel regulators of plant defenses against pests, and understanding how to reduce training data annotation costs in machine learning. Ultimately, the enhancements to the ELSA cluster in this project will significantly improve capacity for scientific discovery, and help TCNJ faculty prepare undergraduate students to leverage the increasingly powerful HPC resources of the future in their careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在该项目中,新泽西学院 (TCNJ) 将购买设备来显着升级和增强我们的科学与分析电子实验室 (ELSA) 高性能计算 (HPC) 集群。理学院教师在整个学年和暑假期间在本科生暑期指导体验 (MUSE) 中与本科生密切合作,超过 75% 的 TCNJ 理科毕业生获得了在该项目的过程中,每年有近 100 名本科生研究人员将受益于理学院所有系(物理、化学、生物学、数学和统计学、和计算机科学)以及土木工程方面的研究经验对于学生来说具有变革性,使他们能够接受计算培训,并促进他们在机器学习、天体物理学、生物物理学、数学生物学等领域的研究。除了研究实验室之外,科学教师将 ELSA 融入到他们的教学中,每年让 800-1000 名本科生接触先进计算,TCNJ 还致力于通过提高代表性不足的学生和高代表性学生的成功率,为所有 STEM 学生创造一个研究密集型环境。通过与 Open Science Grid 合作获得 ELSA 的机会正在刺激研究项目并促进联盟的集体影响力。 ELSA 集群是位于 TCNJ HPC 中心的异构 HPC 集群,它是最先进的资源,将继续满足 TCNJ 科学教师和本科生当前和未来的计算需求。将包括购买高端 GPU、具有快速互连和大内存容量的快速现代 CPU,以及基于高速网络的存储。这些升级将直接有利于 18 名 TCNJ 教员的研究项目,使他们能够开展研究项目。继续让本科生参与变革性的研究体验,设计一个同时连接高速存储的 GPU 节点和 CPU 节点的系统的目的是使 ELSA 能够运行一组多样化的研究工作流程,以反映所进行的各种跨学科计算研究。这些教师的工作涵盖了一系列跨学科主题,包括 (1) 计算物理学、(2) 数学/计算生物学、(3) 基因组学、(4) 机器学习和其他领域的一些例子。各种科学努力该集群将支持包括细菌菌毛生物力学的分子模拟研究,评估环双星行星的宜居性,使用数学模型探索海洋无脊椎动物游泳性能的进化权衡,采用基因组方法来表征植物防御害虫的新型调节剂,并了解如何最终,该项目中对 ELSA 集群的增强将显着提高科学发现的能力,并帮助 TCNJ 教师为本科生利用日益强大的 HPC 做好准备。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Baker其他文献
Understanding Seniors' Perceptions and Stereotypes of Aging
了解老年人对衰老的看法和刻板印象
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Sean Horton;Joseph Baker;Jean Côté;J. Deakin - 通讯作者:
J. Deakin
CS 224 n – Final Project
CS 224n – 最终项目
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Joseph Baker;D. Christie - 通讯作者:
D. Christie
Performance investigation of an electrochemical ammonia compressor stack
电化学氨压缩机组的性能研究
- DOI:
10.1016/j.ijrefrig.2023.05.020 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Joseph Baker;Longsheng Cao;Y. Hwang;Chunsheng Wang;R. Radermacher - 通讯作者:
R. Radermacher
Ionospheric Sluggishness: A Characteristic Time‐Lag of the Ionospheric Response to Solar Flares
电离层迟缓:电离层对太阳耀斑响应的特征时滞
- DOI:
10.1029/2020ja028813 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
S. Chakraborty;J. Ruohoniemi;Joseph Baker;S. Bailey;R. Fiori;K. Zawdie - 通讯作者:
K. Zawdie
Talent inclusion and genetic testing in sport: A practitioner’s guide
体育中的人才包容和基因检测:从业者指南
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexander B. T. McAuley;Joseph Baker;Kathryn Johnston;I. Varley;A. J. Herbert;Bruce Suraci;David C. Hughes;Loukia G Tsaprouni;A. Kelly - 通讯作者:
A. Kelly
Joseph Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Baker', 18)}}的其他基金
Collaborative Research: NSFGEO-NERC:Conjugate Experiment to Investigate Sources of High-Latitude Magnetic Perturbations in Coupled Solar Wind-Magnetosphere-Ionosphere-Ground System
合作研究:NSFGEO-NERC:研究太阳风-磁层-电离层-地面耦合系统中高纬度磁扰动源的共轭实验
- 批准号:
2027168 - 财政年份:2020
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant
MRI: Acquisition of Hardware for the Enhancement of the ELSA High Performance Computing Cluster to Enable Computational Research at The College of New Jersey
MRI:采购硬件以增强 ELSA 高性能计算集群,以支持新泽西学院的计算研究
- 批准号:
1828163 - 财政年份:2018
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant
RUI: Investigation of the structure and dynamics of type IV pilus filaments using all-atom and coarse-grained molecular dynamics
RUI:利用全原子和粗粒分子动力学研究 IV 型菌毛丝的结构和动力学
- 批准号:
1817670 - 财政年份:2018
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Swift/E: Integrating Parallel Scripted Workflow into the Scientific Software Ecosystem
协作研究:SI2-SSI:Swift/E:将并行脚本工作流程集成到科学软件生态系统中
- 批准号:
1550528 - 财政年份:2016
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant
Collaborative Research: Inferring High Latitude Convection Patterns Using SuperDARN, DMSP and ACE
合作研究:使用 SuperDARN、DMSP 和 ACE 推断高纬度对流模式
- 批准号:
1258522 - 财政年份:2014
- 资助金额:
$ 93.53万 - 项目类别:
Continuing Grant
CAREER: Inter-Hemispheric Magnetic Conjugacy of Ionospheric Convection
职业:电离层对流的半球间磁共轭
- 批准号:
1150789 - 财政年份:2012
- 资助金额:
$ 93.53万 - 项目类别:
Continuing Grant
GEM Postdoc: Characteristics of Ultra Low Frequency (ULF) Waves Associated with Electron Acceleration to Relativistic Energies
GEM 博士后:与电子加速相对论能量相关的超低频 (ULF) 波的特征
- 批准号:
0924919 - 财政年份:2009
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant
Technology Transfer For Energy Management
能源管理技术转让
- 批准号:
7501767 - 财政年份:1975
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant
相似国自然基金
基于PET-MRI的黑质-纹状体-皮质环路及皮质运动网络在帕金森病异动症中的机制研究
- 批准号:82302158
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PSMA的NIR-II荧光/MRI双模态成像用于前列腺癌早期精准诊断研究
- 批准号:82360353
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
- 批准号:82360337
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于糖酵解代谢重编程机制的糖尿病肾病MRI预后评估研究
- 批准号:82371942
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
MRI场强依赖性时域噪声电磁机理与抑制方法研究
- 批准号:52307256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
- 批准号:
2319708 - 财政年份:2023
- 资助金额:
$ 93.53万 - 项目类别:
Continuing Grant
Equipment: MRI Track 1: Acquisition of Flow Cytometer
设备:MRI 轨道 1:流式细胞仪的购置
- 批准号:
2320130 - 财政年份:2023
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a Hydraulic and Sediment Recirculation Flume to Advance Fundamental Research in Urban Stormwater and Fluvial Processes
设备: MRI:轨道 2 获取水力和沉积物再循环水槽,以推进城市雨水和河流过程的基础研究
- 批准号:
2320356 - 财政年份:2023
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
- 批准号:
2320407 - 财政年份:2023
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
- 批准号:
2320405 - 财政年份:2023
- 资助金额:
$ 93.53万 - 项目类别:
Standard Grant