CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods

职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化

基本信息

  • 批准号:
    2237616
  • 负责人:
  • 金额:
    $ 51.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Mathematical optimization is the process of maximizing a performance or quality indicator by identifying the best possible value among the set of all feasible options. Optimization problems arise in virtually all human endeavors related to decision making including engineering, economics, sustainability, healthcare, and manufacturing. Instances of such optimization problems are particularly challenging to solve whenever evaluating performance and/or testing for feasibility requires an expensive simulation or experiment whose results may be corrupted by random errors. Bayesian optimization (BO) is a class of machine learning-based optimization algorithms that has recently been shown to achieve state-of-the-art performance in several important applications from this problem class such as in deep machine learning, validation of expensive simulators, and material and drug design. However, traditional BO methods treat the mathematical functions that model performance and feasibility as black boxes with unknown structure, which sets a fundamental limit on their computational efficiency. This observation is the key motivation for this research project, which looks to overcome these efficiency barriers via the development of new algorithms that exploit known problem structures within the Bayesian framework. These novel capabilities will be applied to three unsolved problems currently impacting society: (1) identifying unknown mechanisms in cellular decision-making processes for biomanufacturing; (2) discovery of new sustainable and economical lithium-ion battery electrode materials; and (3) real-time energy minimization in industrial heating, ventilation, and air conditioning (HVAC) systems. In addition, the project looks to tightly integrate research and educational activities through the development of interactive workshops and games related to decision science, which will be made accessible to the public. Through collaboration with local educators, planned outreach activities also will provide K-12 students from underrepresented communities with opportunities to learn about decision science.The proposed optimization methodology is inspired by the principle of grey-box modeling, which states that one should avoid learning what is already known when applying machine learning methods. The investigator conjectures a significant reduction in experimental and/or computational effort can be obtained in practice over traditional Bayesian optimization (BO) methods by properly leveraging prior (or domain) knowledge, which is almost always available in practice. Since prior knowledge can come in many diverse forms, the proposed research will focus on some of the most common and important examples. The three specific research aims are: (1) optimizing with hybrid physics-based and data-driven models given noisy and incomplete datasets; (2) optimizing with constrained multi-fidelity models that fuse data from a collection of heterogeneous sources of variable accuracy and cost; and (3) scaling to high-dimensional and sparse data problems through the incorporation of non-myopic and graph-structured formulations. The proposed research aims to promote convergence of statistics, machine learning, optimization, and process systems engineering. More broadly, the improved methods developed as a part of this research project will allow practitioners to solve a wide range of grey-box optimization problems with greater speed and accuracy. Planned outreach activities include educating K-12 students about decision-making under uncertainty via interactive workshops and games, incorporating new data-driven optimization material into the chemical engineering curriculum, and organizing cross-disciplinary professional workshops on the potential significance and impacts of cutting-edge BO technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学优化是通过在所有可行选项集中确定最佳可能值来最大化性能或质量指标的过程。优化问题几乎出现在所有与决策相关的人类活动中,包括工程、经济、可持续发展、医疗保健和制造。每当评估性能和/或测试可行性需要昂贵的模拟或实验(其结果可能会被随机误差破坏)时,解决此类优化问题的实例就特别具有挑战性。贝叶斯优化 (BO) 是一类基于机器学习的优化算法,最近被证明可以在此类问题的几个重要应用中实现最先进的性能,例如深度机器学习、昂贵模拟器的验证、以及材料和药物设计。然而,传统的BO方法将建模性能和可行性的数学函数视为结构未知的黑匣子,这对其计算效率造成了根本限制。这一观察结果是该研究项目的关键动机,该项目旨在通过开发利用贝叶斯框架内已知问题结构的新算法来克服这些效率障碍。这些新功能将应用于当前影响社会的三个未解决的问题:(1)识别生物制造细胞决策过程中的未知机制; (2)发现新型可持续且经济的锂离子电池电极材料; (3) 工业供暖、通风和空调 (HVAC) 系统中的实时能源最小化。此外,该项目还希望通过开发与决策科学相关的互动研讨会和游戏,将研究和教育活动紧密结合起来,并向公众开放。通过与当地教育工作者合作,计划中的外展活动还将为来自代表性不足社区的 K-12 学生提供学习决策科学的机会。所提出的优化方法受到灰盒建模原理的启发,该原理指出人们应该避免学习什么应用机器学习方法时已经知道。研究人员推测,通过正确利用在实践中几乎总是可用的先验(或领域)知识,在实践中可以比传统的贝叶斯优化(BO)方法显着减少实验和/或计算工作量。由于先验知识可以有多种形式,因此拟议的研究将集中于一些最常见和重要的例子。三个具体的研究目标是:(1)在给定噪声和不完整数据集的情况下,使用基于混合物理和数据驱动的模型进行优化; (2) 使用约束多保真度模型进行优化,该模型融合来自可变精度和成本的异构源集合的数据; (3)通过结合非短视和图结构公式来缩放高维和稀疏数据问题。拟议的研究旨在促进统计、机器学习、优化和过程系统工程的融合。更广泛地说,作为该研究项目的一部分开发的改进方法将使从业者能够以更高的速度和准确性解决各种灰盒优化问题。计划的外展活动包括通过互动研讨会和游戏,对 K-12 学生进行关于不确定性下决策的教育,将新的数据驱动优化材料纳入化学工程课程,以及组织关于切割的潜在意义和影响的跨学科专业研讨会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LSR-BO: Local Search Region Constrained Bayesian Optimization for Performance Optimization of Vapor Compression Systems
LSR-BO:用于蒸汽压缩系统性能优化的局部搜索区域约束贝叶斯优化
  • DOI:
    10.23919/acc55779.2023.10155821
  • 发表时间:
    2023-05-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Paulson;Farshud Sorourifar;C. Laughman;A. Chakrabarty
  • 通讯作者:
    A. Chakrabarty
A Tutorial on Derivative-Free Policy Learning Methods for Interpretable Controller Representations
可解释控制器表示的无导数策略学习方法教程
  • DOI:
    10.23919/acc55779.2023.10156412
  • 发表时间:
    2023-05-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Paulson;Farshud Sorourifar;A. Mesbah
  • 通讯作者:
    A. Mesbah
No-regret constrained Bayesian optimization of noisy and expensive hybrid models using differentiable quantile function approximations
使用可微分位数函数近似对噪声和昂贵的混合模型进行无遗憾约束贝叶斯优化
  • DOI:
    10.1016/j.jprocont.2023.103085
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Lu, Congwen;Paulson, Joel A.
  • 通讯作者:
    Paulson, Joel A.
Self-Optimizing Vapor Compression Cycles Online With Bayesian Optimization Under Local Search Region Constraints
局部搜索区域约束下贝叶斯优化在线自优化蒸汽压缩循环
Gradient-Enhanced Bayesian Optimization via Acquisition Ensembles with Application to Reinforcement Learning
通过采集集成进行梯度增强贝叶斯优化并应用于强化学习
  • DOI:
    10.1016/j.ifacol.2023.10.1639
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Makrygiorgos, Georgios;Paulson, Joel A.;Mesbah, Ali
  • 通讯作者:
    Mesbah, Ali
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Paulson其他文献

Joel Paulson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

果蝇幼虫前进运动发起的神经机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
  • 批准号:
    61903230
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
内蒙古中东部毛登-前进场早石炭世强过铝花岗岩带地球化学成因及其构造意义
  • 批准号:
    41702054
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
搅拌摩擦焊接过程前进阻力周期脉动振荡行为及调控研究
  • 批准号:
    51675248
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
高前进比大反流区对旋翼操纵响应的作用机理及影响规律研究
  • 批准号:
    51505216
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BRITE Pivot: Advancing Knowledge in Water-Shell Structure Interaction Through Discovery of Efficient Hydrodynamic and Structural Thin-shell Forms
BRITE Pivot:通过发现有效的流体动力学和结构薄壳形式来推进水壳结构相互作用的知识
  • 批准号:
    2227489
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track I: Advancing Sustainable Topological Material Prototype Devices for Energy-efficient Applications
NSF 融合加速器轨道 I:推进可持续拓扑材料原型器件的节能应用
  • 批准号:
    2345084
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Cooperative Agreement
BRITE Pivot: Advancing Knowledge in Water-Shell Structure Interaction Through Discovery of Efficient Hydrodynamic and Structural Thin-shell Forms
BRITE Pivot:通过发现有效的流体动力学和结构薄壳形式来推进水壳结构相互作用的知识
  • 批准号:
    2227489
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
Advancing fMRI Acquisition through Dissemination of EPTI- An Efficient Distortion-Free Multi-Contrast Imaging Technology
通过传播 EPTI(一种高效的无失真多重对比成像技术)推进 fMRI 采集
  • 批准号:
    10572005
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
PRE-DETERMINE: Advancing Sudden Arrhythmic Death Prediction in Coronary Artery Disease in the Absence of Severe Systolic Dysfunction
预先确定:在没有严重收缩功能障碍的情况下推进冠状动脉疾病的心律失常性猝死预测
  • 批准号:
    10608859
  • 财政年份:
    2023
  • 资助金额:
    $ 51.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了