CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
基本信息
- 批准号:2236947
- 负责人:
- 金额:$ 54.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The objective of this CAREER project is to engage and educate graduate and undergraduate students in materials design, with a particular focus on designing cellular mechanical metamaterials (CMMs) under the effects of fabrication-related material uncertainty. The plan includes physics-based computations, machine learning (ML), and design under uncertainty strategies, as well as the development of outreach activities. The underlying hypothesis is that the CMMs can be designed to achieve targeted mechanical properties and performance by developing a multi-scale computational framework that investigates the relationship between component-scale properties and underlying micro-scale architectures. The societal impacts of the project will be on the economy, with the promise of designing sustainable, lightweight, and high-performance materials. The gained knowledge will be disseminated to academia and industry through technical activities and open-access graphical software tools. Additional deliverables of the project include curriculum development at undergraduate and graduate levels, research experiences for students, and other outreach activities involving students and educators, with a special focus on individuals from underrepresented groups.The overarching goal of this project is to improve the current knowledge of CMM design and enhance the performance of 3-D printed products using a multi-scale framework that will explore complex and non-linear relationships between the microstructure and component by allowing non-periodically repeating microstructure designs and accounting for the fabrication-related uncertainty. This goal will be accomplished by developing a multi-scale design strategy driven by physics-based material models, data-driven and physics-informed ML, design optimization, and uncertainty quantification approaches. The ability to model non-periodical microstructure arrangements of CMMs will be essential to explore their true component-level mechanical performance, thereby substantially increasing their potential for use in new-generation engineering systems for hypersonics, structural applications, energy absorption, sensors, and soft robots. The findings of the project will also identify designs that improve mechanical performance and reliability by considering the effects of material uncertainty. In addition, the design methodology for CMMs will be extended to nature-inspired cellular materials, such as artificial bone structures, for designing such systems to achieve target mechanical performance under uncertainty. The activity will also promote teaching, training, and learning through the development of outreach activities, such as camps, programs, and workshops targeting both youths and teachers. The participation of underrepresented groups is guaranteed by specifically addressing outreach programs for female students, first-generation college students, students from underserved communities in Southwest Virginia, and other minorities. The project data and findings will be made publicly available at Virginia Tech’s open-access repository, VTechData.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业项目的目标是吸引和教育研究生和本科生进行材料设计,特别关注在制造相关材料不确定性的影响下设计细胞机械超材料(CMM)。该计划包括基于物理的计算、机器。学习(ML),不确定性目标策略下的设计,以及外展活动的发展,其基本假设是,可以通过开发研究之间关系的多尺度计算框架来设计坐标测量机来实现机械特性和性能。组件规模属性和该项目的社会影响将对经济产生影响,并承诺设计出可持续、轻量级和高性能的材料,所获得的知识将通过技术活动和开放获取传播给学术界和工业界。该项目的其他可交付成果包括本科生和研究生水平的课程开发、涉及学生的研究经验以及学生和教育工作者的其他外展活动,特别关注来自代表性不足群体的个人。该项目的总体目标是改进目前的知识CMM 设计并使用多尺度框架增强 3D 打印产品的性能,该框架将通过允许非周期性重复微结构设计并考虑与制造相关的不确定性来探索微结构和组件之间的复杂非线性关系。这一目标将通过开发由基于物理的材料模型、数据驱动和物理信息的机器学习、设计优化和不确定性量化方法驱动的多尺度设计策略来实现,从而能够对 CMM 的非周期性微观结构排列进行建模。对于探索其真正的组件级机械性能至关重要,从而大大提高其在高超音速、结构应用、能量吸收、传感器和软机器人的新一代工程系统中的应用潜力。该项目的研究结果还将确定以下设计:通过考虑材料不确定性的影响来提高机械性能和可靠性。此外,坐标测量机的设计方法将扩展到受自然启发的细胞材料,例如人造骨结构,以设计此类系统以在不确定性活动下实现目标机械性能。还将通过以下方式促进教学、培训和学习开展外展活动,例如针对青年和教师的夏令营、项目和讲习班 通过专门针对女学生、第一代大学生、来自弗吉尼亚州西南部服务不足社区的学生的外展项目,保证代表性不足的群体的参与。该项目的数据和研究结果将在弗吉尼亚理工大学的开放获取存储库 VTechData 上公开。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pinar Acar其他文献
Eliminating Magnetic Phase Transitions with Microstructural Optimization in 2D Lattices
通过二维晶格中的微观结构优化消除磁相变
- DOI:
10.2514/6.2024-0030 - 发表时间:
2024-01-04 - 期刊:
- 影响因子:0
- 作者:
Zekeriya Ender Eğer;Pinar Acar - 通讯作者:
Pinar Acar
Sensitivity Assessment on Homogenized Stress–Strain Response of Ti-6Al-4V Alloy
Ti-6Al-4V 合金均匀应力-应变响应的敏感性评估
- DOI:
10.1007/s11837-023-06188-5 - 发表时间:
2023-10-26 - 期刊:
- 影响因子:2.6
- 作者:
Mohamed Elleithy;Hengduo Zhao;Pinar Acar - 通讯作者:
Pinar Acar
Design of polycrystalline metallic alloys under multi-scale uncertainty by connecting atomistic to meso-scale properties
通过连接原子与介观尺度特性来设计多尺度不确定性下的多晶金属合金
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.4
- 作者:
M. Billah;Pinar Acar - 通讯作者:
Pinar Acar
A Deep Learning Framework for Time-Series Processing-Microstructure-Property Prediction
用于时间序列处理-微观结构-性能预测的深度学习框架
- DOI:
10.1109/icmla58977.2023.00131 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:0
- 作者:
Yuwei Mao;Mahmudul Hasan;C. Lee;Muhammed Nur Talha Kilic;Vishu Gupta;Wei;Alok N. Choudhary;Pinar Acar;Ankit Agrawal - 通讯作者:
Ankit Agrawal
Sensitivity Analysis and Uncertainty Quantification for Crystal Plasticity Parameters of Ti-6Al-4V Alloy
Ti-6Al-4V合金晶体塑性参数的敏感性分析和不确定度量化
- DOI:
10.2514/6.2024-1233 - 发表时间:
2024-01-04 - 期刊:
- 影响因子:0
- 作者:
Mohamed Elleithy;Pinar Acar - 通讯作者:
Pinar Acar
Pinar Acar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pinar Acar', 18)}}的其他基金
Collaborative Research: AI-Driven Multi-Scale Design of Materials under Processing Constraints
协作研究:人工智能驱动的加工约束下材料的多尺度设计
- 批准号:
2053840 - 财政年份:2021
- 资助金额:
$ 54.94万 - 项目类别:
Standard Grant
相似国自然基金
去蜂窝大规模MIMO下的共生无线网络架构设计与差异管理
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
混合能量源驱动的“去蜂窝”网络设计理论与方法
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于内容拓扑的网络化协作缓存技术研究
- 批准号:61701372
- 批准年份:2017
- 资助金额:26.5 万元
- 项目类别:青年科学基金项目
无人机小型蜂窝网络系统设计与优化控制关键技术研究
- 批准号:61771064
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
基于LAA的认知蜂窝网络设计理论与优化研究
- 批准号:61601247
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the interplay between senescence and T cell immunity
研究衰老与 T 细胞免疫之间的相互作用
- 批准号:
10643160 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
Accelerating digital cognitive screening for Alzheimer's disease in the Primary Care Setting
加速初级保健机构中阿尔茨海默病的数字认知筛查
- 批准号:
10664618 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
High-dimensional single-cell mapping to define immune signatures of cytomegalovirus-associated rejection in cardiac transplantation
高维单细胞图谱定义心脏移植中巨细胞病毒相关排斥反应的免疫特征
- 批准号:
10816183 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
Feasibility of a Hearing Program in Primary Care for Underserved Older Adults
为服务不足的老年人提供初级保健听力计划的可行性
- 批准号:
10727976 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
Washington University Postbaccalaureate Research Education Program
华盛顿大学学士后研究教育计划
- 批准号:
10772756 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别: