Neurally-Inspired Integration of Communication and Cognitive Computation in Hyperspace

超空间中通信和认知计算的神经启发集成

基本信息

  • 批准号:
    2319198
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The next generation of communication systems holds the potential to enhance every aspect of our lives. From enabling seamless global connectivity and telemedicine advancements to transforming transportation, fostering education and entrepreneurship, supporting disaster response, and driving economic growth. However, current computer systems face a challenge where communication and learning applications operate independently, leading to inefficiencies and delays caused by the need to coordinate between these separate layers. Merely improving battery life in mobile devices is insufficient to keep up with the growing demand for efficient processing, especially considering the rapid advancements in machine learning. This project seeks to address these fundamental issues by pioneering advanced technology for communication that seamlessly integrates channel coding with machine learning. By bringing these two domains together, we aim to achieve hyper-reliable communication and efficient machine learning processing. Moreover, we aim to develop future learning systems that can operate flawlessly even in noisy and unreliable network environments. This approach has the potential to provide users with the benefits of neurally-inspired learning models across various network, thereby significantly enhancing the efficiency and robustness of these systems. In addition to its technical advancements, this project recognizes the importance of education, diversity, and broader societal benefits. This project aims to establish a new exploratory undergraduate research program, fostering early research scholars who will contribute to the field of intelligent networks and computing systems. Furthermore, international collaboration will be a key component, allowing us to engage with global experts and share knowledge to advance the field as a whole.This research project presents a neural-inspired network system for robust and efficient data communication and information processing. It achieves this by redesigning communication and machine learning using a unified neural mathematical foundation with high compatibility. The main contributions of our proposal are as follows: (1) Designing rigorous communication schemes that work with the high-dimensional representation of transferred data in a mathematically tractable manner. This communication scheme consists of encoding/decoding methods that leverage redundant and holographic neural representations to achieve ultra-efficient and robust data communication. It also provides concrete network-level simulation and optimization to ensure the desired latency and responsiveness. (2) Fundamentally merging channel coding and learning by directly computing over transmitted data, eliminating the need for costly iterative data decoding. This eliminates the inter-layer overhead between communication and computation procedures that exists in prior communication schemes. (3) Designing a hardware platform that offers high parallelism and efficiency for both communication and computation. The proposed highly optimized hardware will automatically map applications to FPGA, equipped with a transceiver module, and leverage the parallelism provided by these platforms. Our framework will be evaluated using both complete simulation environments and real-world deployment in communication and application infrastructures. The prototype will be fully released under an established open-source library for public dissemination.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代的通信系统具有增强我们生活的各个方面的潜力。从实现无缝的全球连通性和远程医疗的进步,到转变运输,促进教育和企业家精神,支持灾难反应以及推动经济增长。但是,当前的计算机系统面临着一个挑战,即通信和学习应用程序独立运行,从而导致效率低下和由于需要在这些单独的层之间进行协调而造成的延迟。仅仅改善移动设备中的电池寿命不足以跟上对高效处理的不断增长的需求,尤其是考虑到机器学习的迅速发展。该项目旨在通过开创高级技术来解决这些基本问题,以无缝将渠道编码与机器学习整合在一起。通过将这两个领域融合在一起,我们旨在实现超可靠的沟通和有效的机器学习处理。此外,我们旨在开发未来的学习系统,即使在嘈杂和不可靠的网络环境中,也可以完美运行。这种方法有可能为用户提供各个网络中神经启发的学习模型的好处,从而显着提高这些系统的效率和鲁棒性。除了其技术进步外,该项目还认识到教育,多样性和更广泛的社会利益的重要性。该项目旨在建立一个新的探索性本科研究计划,促进将为智能网络和计算系统领域做出贡献的早期研究学者。此外,国际合作将是一个关键组成部分,使我们能够与全球专家互动并分享知识以整个领域。本研究项目提出了一种神经启发的网络系统,用于强大而有效的数据通信和信息处理。它通过使用具有高兼容性的统一神经数学基础来重新设计通信和机器学习来实现这一目标。我们的提案的主要贡献如下:(1)设计严格的通信方案,这些方案与以数学可触犯的方式一起使用转移数据的高维表示。该通信方案由编码/解码方法组成,这些方法利用冗余和全息神经表示来实现超高效率和稳健的数据通信。它还提供具体网络级别的仿真和优化,以确保所需的延迟和响应能力。 (2)从根本上通过直接计算传输数据来合并通道编码和学习,从而消除了对昂贵的迭代数据解码的需求。这消除了先前通信方案中存在的通信和计算过程之间的层间开销。 (3)设计一个可为通信和计算提供高的并行性和效率的硬件平台。提出的高度优化的硬件将自动将应用程序映射到FPGA,配备收发器模块,并利用这些平台提供的并行性。我们的框架将使用完整的仿真环境和通信和应用程序基础架构中的现实部署进行评估。该原型将在既定的公共传播开源图书馆下完全发布。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohsen Imani其他文献

Design of Ultra-Compact Content Addressable Memory Exploiting 1T-1MTJ Cell
利用 1T-1MTJ 单元的超紧凑内容可寻址存储器设计
Lightning Talk: Bridging Neuro-Dynamics and Cognition
闪电演讲:连接神经动力学和认知
Sparsity Controllable Hyperdimensional Computing for Genome Sequence Matching Acceleration
用于基因组序列匹配加速的稀疏可控超维计算
Efficient Exploration in Edge-Friendly Hyperdimensional Reinforcement Learning
边缘友好的超维强化学习的高效探索
Self-Attention Based Semantic Decomposition in Vector Symbolic Architectures
向量符号架构中基于自注意力的语义分解
  • DOI:
    10.48550/arxiv.2403.13218
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Calvin Yeung;Prathyush P. Poduval;Mohsen Imani
  • 通讯作者:
    Mohsen Imani

Mohsen Imani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohsen Imani', 18)}}的其他基金

CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
  • 批准号:
    2312517
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Hyperdimensional Neural Computation for Real-Time Cognitive Learning
用于实时认知学习的超维神经计算
  • 批准号:
    2127780
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似海外基金

NSF PRFB FY 2023: Flexible strategies for multisensory integration inspired by the insect central complex
NSF PRFB 2023 财年:受昆虫中枢复合体启发的多感官整合灵活策略
  • 批准号:
    2305641
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship Award
Memory and Recognition Integration Model Inspired by Hippocampus and Cerebral Cortex
受海马体和大脑皮层启发的记忆和识别整合模型
  • 批准号:
    23K11247
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integration of Mars rover Curiosity inspired techniques into a laboratory spectroscopic system.
将火星探测器好奇号启发的技术集成到实验室光谱系统中。
  • 批准号:
    573544-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    University Undergraduate Student Research Awards
NRI: Adaptive Wearable Robots for Movement Assistance via Bio-Inspired Sensorimotor Integration
NRI:通过仿生感觉运动集成提供运动辅助的自适应可穿戴机器人
  • 批准号:
    2221315
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Development of Fast and Highly Effective Feature Subset Selection Algorithms based on Novel Integration of Quantum Computing and Machine Learning
基于量子计算和机器学习的新颖集成开发快速高效的特征子集选择算法
  • 批准号:
    20K11939
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了